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Chapter 1

Introduction

The oft-quoted proverb "two heads are better than one" often seems

to have its counterpart in computing sciences: "two processors are better than

one; and furthermore, the more processors, the better." One particular multi-

processing environment is that of asynchronous distributed systems. In asyn-

chronous distributed systems, nodes are connected to one another by some

communications medium, and nodes do not share memory or have a common

clock. Processes at different nodes communicate with one another by exchang-

ing messages [MOO, PS].

Many algorithms can be designed for asynchronous distributed sys-

tems that will result in the following improvements over similar algorithms

written for single processors [MS]:

1. faster execution due to parallelism

2. improved resiliency to failures

3. absence of single site bottlenecks

As a result of these potential enhancements, much research is concentrating on

the area of distributed systems.
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1.1 The Problem

An algorithm that distributes its computation among asynchronous

processes at multiple sites is a distributed algorithm. Often times, the dis-

tributed computations contend for a common resource. Concurrency control

algorithms are required to efficiently manage the contention. This necessity of

controlling concurrency in distributed systems gives rise to a "layered" system,

where there is an underlying computation and a separate algorithm to synchro-

nize the underlying computation [CM87a]. We will not concern ourselves with

the underlying computation. We will assume that the process executing the

underlying computation participates in the concurrency control algorithm as

necessary to obtain and release resources.

One important class of concurrency control algorithms, and the one

that is the focus of this dissertation, is that of distributed mutual exclusion. In

distributed mutual exclusion algorithms, a process requests entry to a critical

section. The process waits for entry to the critical section in a mutual exclu-

sion queue and then executes the critical section when it is acquired. Upon

completion of the critical section, the process releases it back to the algorithm.

Distributed mutual exclusion algorithms can be characterized as cen-

tralized. fully distributed, or a hybrid of these two paradigms.

A centralized algorithm designates a single process as a central con-

troller (sometimes referred to as an arbitrator). This controller coordinates the

activity of every other process in the system. A centralized algorithm has the

following characteristics [MOO]:

1. There exists a single central controller.
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2. The controller maintains all necessary information to enforce the desired

algorithmic behavior. 1

3. The central controller makes decisions based on global state information.

4. The central controller bears responsibility for ensuring that the actions

taken by other processes in the system result in the desired algorithmic

behavior.

A fully distributed algorithm requires every process to do an equal

amount of coordination to enforce the desired behavior. Specifically, a fully

distributed algorithm has the following characteristics [MOO]:

1. Processes possess an equal amount of partial state information. 2

2. Processes make decisions solely on partial state information.

3. Processes bear equal responsibility for enforcing the desired algorithmic

behavior.

4. Processes expend an equal amount of effort to enforce the desired algo-

rithmic behavior.

A hybrid algorithm may lie anywhere in the spectrum between cen-

tralized and fully distributed. One particular hybrid algorithm is the mutual

exclusion algorithm of Maekawa [Mae]:

1. The controller is replicated some number of times in the system.

'Redundant information may be maintained by other processes.
2 In mutual exclusion, for example, partial state information implies that a process does

not have complete knowledge of the priority queue.
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2. Each controller is responsible for the behavior of some subset of processes

in the system.

3. Conflicts among processes in different subsets are resolved by the respon-

sible controller.

Another important area of investigation within distributed systems is

that of fault tolerance. In the presence of failures, concurrency control algo-

rithms must allow processes to detect failure, compensate for it, and continue

computation. If a process fails and then recovers, the algorithm must allow the

process to reacquire the state lost at failure and rejoin the algorithm in a state

consistent with the execution of the algorithm. Protocols for failure detection

and recovery vary according to whether a system employs a centralized, fully

distributed, or hybrid algorithm.

A centralized implementation must employ the following failure pro-

tocols when processes fail:

" failure detection

1. Detection of controller failure.

2. Detection of process failure.

" failure compensation

1. When the controller fails, a new controller must be elected and the

explicit mutual exclusion queue reconstructed.

2. When an arbitrary process fails, the controller must update the mu-

tual exclusion queue if necessary and ensure the critical section does

not remain occupied by a failed process.
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* failure recovery

1. When a process rejoins the algorithm, it must determine which pro-

cess is currently serving as the controller.

Fully distributed implementations must employ the following proto-

cols to continue execution in the presence of process failures:

" failure detection

1. Detection of process failure.

" failure compensation

1. The process detecting the failure of another process must update its

local state and notify the rest of the system of the failure.

" failure recovery

1. When a process rejoins the algorithm, it must obtain a list of active

processes in the system, notify other active processes that it has

rejoined the algorithm, and obtain a timestamp consistent with the

execution of the algorithm.

A hybrid implementation will employ protocols tailored to the pe-

culiar characteristics of the algorithm. In the Maekawa algorithm, for exam-

ple, there is logical replacement of failed controllers rather than the use of

an election protocol [Mae]. In the Schneider algorithm, global state must be

reacquired by a recovering process [Sch].
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What metrics are available to quantify faster execution, improved

failure resiliency, and absence of bottlenecks in distributed systems? The fol-

lowing criteria have been proposed as a means to assess the performance of a

distributed algorithm with no failures [Sil84]:

" The amount of message traffic generated to implement the algorithm.

" The amount of local processing required by a process to carry out its

designated function.

" The amount of local data required by a process to carry out its designated

function.

When the notion of process failure is added to a distributed system,

the following additional criteria are proposed [Sil84]:

* The amount of redundant data that must be maintained in order for the

system to recover in the event of failure.

" The efficiency of an algorithm after it recovers from failure.

" The ability of an algorithm to continue computation in the presence of

process failure.

" The similarity of an algorithm's characteristics after failure to its charac-

teristics prior to failure.

These criteria are primarily a subjective basis of quantification. What

does it mean to say the "efficiency of an algorithm after it recovers from fail-

ure"? Without a well-defined basis for describing efficiency prior to failure,

there can be no basis for describing efficiency after failure. It appears that



7

new, well-defined metrics are necessary to properly evaluate the performance

of distributed algorithms.

1.2 The Mutual Exclusion Problem

Many implementations of distributed mutual exclusion algorithms

have been proposed. It is widely held that fully distributed implementations of

mutual exclusion are in some way more efficient than their centralized counter-

parts [Bag, CM87a, RA]. Vulnerability of the central controller and the belief

that the central controller becomes a bottleneck are the primary reasons for

this assertion.

Mutual exclusion is a special case of distributed semaphores. In both

mutual exclusion and distributed semaphore algorithms, some process is chosen

from among the other processes; in the case of distributed semaphores, more

than one process may be chosen. Since one or more processes can be granted

special status in the algorithm for distributed semaphores, an algorithm for

distributed semaphores is a more general mechanism than necessary for mutual

exclusion. Regardless, how one chooses these processes and how these processes

then discover that they are chosen is a dilemma shared with mutual exclusion

algorithms.

Leader election is a special case of mutual exclusion. In both leader

election and mutual exclusion algorithms, some single process is chosen from

among the other processes in the system. This process is then granted spe-

cial status: in mutual exclusion, the chosen process enters the critical section;

in leader election, the chosen process becomes a central controller. How one

chooses the process and how the process discovers its special status are basic

to both algorithms.
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Hence, if we can make observations about the performance of mu-

tual exclusion algorithms, they may help determine how leader election and

distributed semaphore algorithms perform in their various implementations.

Finally, any new performance metrics that we discover for mutual exclusion

algorithms may be useful for measuring the performance of all distributed sys-

tems that use shared resources.

1.3 Definition of Mutual Exclusion

The critical section is a shared resource for which processes through-

out a distributed system contend. An implementation of mutual exclusion must

guarantee every requesting process in the distributed system exclusive access

to the critical section within a finite period of time. The following definition of

mutual exclusion is used as the basis for discussion throughout this dissertation

[CMS7a, Lam86b, MOO, PS, Ray].

Each process in a distributed system contains a noncritical section

statement and a critical section statement. These statements are executed

alternately and generate the following sequence of executions for some process

NCSi -+ waiting, -- CSi - NCS -- waiting, -+ CS, ...

where NCS, denotes the execution of process i's noncritical section, CS denotes

the execution of process i's critical section, and waiting, denotes that process i

has submitted a request for the critical section which has not been satisfied.

For any process i, CS is finite; that is, process i never halts in the

critical section. This assumption also holds in a fail-prone environment in the

sense that failure in the critical section is detected using a timeout mechanism.
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allowing computation to continue. On the other hand, for any process i, NCS

is not necessarily finite; that is, process i may halt in its non-critical section.

Any correct solution to the mutual exclusion problem must guarantee

the following three properties.3

Mutual Exclusion: For any pair of processes i and j, CS and CS,

are not concurrent:

(3 a process i :: CS) =. (-,3 a process j : j # i :: CSj)

Progress: At least one of the processes wishing to reach its critical

section must be capable of reaching it:

(3 a process i :: waitingi A (-,3 a process j : j - i :: CSj) - CS,)

Bounded Waiting: Any process attempting to reach its critical

section must reach it in finite time:

(3 a process i :: waitingi '-4 CS,)

1.4 Goals and Strategies

In this dissertation, we intend to examine the assertion that fully

distributed implementations of mutual exclusion are superior to their central-

ized counterparts. We will characterize the performance of fully distributed

and centralized implementations in the context of new performance metrics for

distributed systems.

3See [CM87a] for an explanation of notation.
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This research is also aimed at quantifying the overhead inherent in

distributed mutual exclusion algorithms. Looking at the spectrum of algo-

rithms, which ranges from centralized to fully distributed, we propose to rank

the efficiency of these algorithms in fail-free and fail-prone environments. In

the fail-prone environment, we have limited our research to systems where only

processes fail. In both environments, we will look at systems with and without

broadcast capability.

Adding the assumption of process failure, we examine different tech-

niques for the reconstruction of control information after failure. It is not our

intention to address how computational data is recovered in a fail-prone en-

vironment. Control information necessary to effect mutual exclusion consists

of the priority queue and a list of active processes; the priority queue may be

either explicit (as in a centralized implementation) or implicit (as in a fully

distributed implementation). Control information can be easily reconstructed

when lost.

We define a model of computation for the underlying distributed sys-

tem. A model of sufficient detail for the simulation of distributed mutual

exclusion algorithms is currently not available in the literature.

We also define a model of computation for the spectrum of distributed

mutual exclusion algorithms. This model allows us to make a reasonable esti-

mate of the efficiency of a particular algorithm on a particular network topology.

These estimates are verified using simulation.

The message-based approach to discrete-event simulation of distributed

systems is the simulation strategy employed in this research [Bag, BCM, Mis86].
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POSSUM4 is the simulation facility used to collect all simulation results [Bru].

The rest of this dissertation is arranged as follows. In Chapter 2,

we define the model of the underlying distributed system which forms the ba-

sis for our results. We also define our model for distributed mutual exclusion

algorithms and develop our approximation methods for predicting their perfor-

mance on varying topologies. Chapter 3 argues the need for new metrics, and

it also presents the analytical results that are derivable from the new metrics

that we define. In Chapter 4, fail-free simulation parameters are defined and

results cataloged. Chapter 5 defines fail-prone simulation parameters and cat-

alogs the simulation results. Finally, Chapter 6 provides conclusions based on

our results and outlines future research.

4POSSUM: Process Oriented Simulation System Using Modula-2, @1986 by Dr. Jeffrey
Brumfield at the University of Texas at Austin.



Chapter 2

Algorithms and Models

In this chapter, we claim that the Maekawa algorithm is incorrectly

implemented in [MOO], which reflects an incorrect proof of deadlock freedom in

[Mae]. We present an example where the algorithm deadlocks and identify the

erroneous assertion in the proof. We then provide a correction to the algorithm.

Our next task is to define a model of the underlying distributed sys-

tem. We present a model with detail sufficient such that one can simulate

distributed mutual exclusion algorithms. W\e define parameters for both fail-

free and fail-prone environments. Ve are unaware of any comparably detailed

description in the literature.

We also present a model of mutual exclusion algorithms which utilizes

the notion of system state and the application of a function to that state

[AB]. We discuss the ramifications of maintaining global state, partial state

and null state on the performance of a distributed system. We also look at

the consequences of applying a distributed or centralized function to the state.

We then rank three distributed mutual exclusion algorithms, in light of these

observations, according to their efficiency in a system where message processing

time is negligible. This model provides the basis for our analytical results

where message processing time and the resulting contention are significant;

these results are derived in Chapter 3 for varying topologies.

12
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2.1 Algorithm Description

We provide the following brief algorithmic descriptions to refresh the

reader's mind. It is assumed that the reader is familiar with the mutual exclu-

sion algorithms studied in this dissertation.

2.1.1 Buckley and Silberschatz [BS84]

The BS algorithm is a straightforward implementation of the cen-

tralized mutual exclusion algorithm. A single controller receives requests for

mutual exclusion, and orders them in a FIFO priority queue. Upon receiving a

release from the process exiting its critical section, the controller grants mutual

exclusion to the head of the queue. Priority in the FIFO queue is based on

when the request is received at the controller.

The BS algorithm detects process failure by ha,,ing the controller

periodically poll the critical section process. Likewise, processes waiting for

the critical section periodically poll the controller. In both cases, a timeout

mechanism detects failure. What makes the BS algorithm unique is its recovery

mechanism; the BS algorithm effectively detects and recovers from controller

failure in a centralized implementation.

2.1.2 Maekawa [Mae]

The Maekawa algorithm is a complex hybrid implementation of mu-

tual exclusion. Based on what Maekawa calls the "pairwise non-null intersec-

tion property," N sets are formed of size K, where K - v' .' Each process

'Each subset S of size K intersects with every other subset of size K; or more formally,
ViVj: I <i,j< N :: Si n Sj :0.
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occurs in K sets, and each process acts as a controller. With the pairwise non-

null intersection property, a process which is granted mutual exclusion within

its own subset is guaranteed to have mutual exclusion among all processes.

A process requesting mutual exclusion sends a request to all processes within

its own subset (process number p is in subset p). If a conflict exists with a

requesting process from another subset, the conflict is resolved by the process

which occurs in both subsets. When all processes in subset p grant mutual

exclusion to p, it acquires the critical section. Upon exiting its critical section,

(K - 1) releases are sent to the other processes in p. Priority in the mutual

exclusion queue may be either of the priorities described for BS and RA (see

Section 2.1.4); a process may receive priority based on when a request is re-

ceived at the controller for its subset as in BS, or it may cause another process

to relinquish its lock, which then gives it priority as in the RA algorithm.

The Alaekawa algorithm is not investigated in a fail-prone environ-

ment in this dissertation. More on fail-detection and recovery can be found in

[Mae].

There is an error in the Maekawa algorithm as published in [MOO],

which reflects an incorrect proof of deadlock freedom in [Mae]. It is a subtle

error that will go undetected until K > 5. A hypothetical sequence of events

is proposed, which will cause deadlock. Assume that K = 6 and that the 31

processes in the system each have an identical current sequence number. Let

CS be shorthand for the critical section:

1. Process 27 requests the CS from its subset [1,27,28,29,30,31]. It receives

a locked message from every member of its subset and enters the CS.

2. Process 19 requests the CS from its subset [4, 8, 16, 19, 22, 30]. It receives

a locked message from every member of its subset except process 30.
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Process 30 sends an inquire message off to process 27 to see if process

27 will relinquish 30. Process 27 is currently in the CS, so it ignores the

inquire message. Meanwhile, process 19 never receives a failed message.

3. Process 2 now requests the CS from its subset [2, 7, 12, 17, 22,27]. It

receives a locked message from every member of its subset except processes

22 and 27. Process 27 will send an inquire message to itself, but since it

is still in the CS, the inquire is ignored. Process 22 will send an inquire

message off to process 19. Since process 19 has never received a failed

message, it places the inquire from process 22 into its outstanding inquiry

queue. Meanwhile, process 2 never receives a failed message.

4. Finally, process 13 requests the CS from its subset [3, 9, 13, 17, 26, 30]. It

receives a locked message from every process except processes 17 and 30.

Process 17 is already locked by process 2, which has never received a failed

message. Process 2 remains the locking process and a failed message is

returned to process 13. At process 30, process 13 finds it locked by process

27. Process 13 will not be sent a failed message, because it has priority

over process 19, which is currently at the head of the queue. Since an

inquire message has already been sent, process 13 is merely inserted into

process 30's waiting queue. However, since process 13 has priority over

process 19, process 13 is placed at the head of the queue, in front of

process 19.

5. When process 27 finally exits the CS, a release message is sent to process

30, and a locked message is relayed to process 13. The result: process 13

is waiting for process 2 at 17, process 2 is waiting for process 19 at 22,

and process 19 is waiting for process 13 at 30. The system deadlocks.
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Maekawa's proof that deadlock cannot occur makes the erroneous

assertion that a process involved in a cycle, whose request timestamp is preceded

by both of its waiting neighbors, must have had at least one of its request

messages arrive later than a request message from one of its waiting neighbors.

The preceding scenario shows that this assertion may not be true: process 19's

request messages arrived prior to those of process 2 and process 13, yet the

request messages of process 19 had later timestamps.

When process 13 is placed at the head of the queue at process 30,

where an inquire message has already been sent, a failed message must be sent

to process 19. Process 19 will then be treated as if its request had actually

arrived later than that of process 13; this will cause process 19 to relinquish 22

to process 2, and the cycle will be broken.

This error points to the continued difficulty of programming asyn-

chronous distributed systems and supports the argument against operational

proofs of algorithms written for distributed systems. Operational proofs tend

to be long and unconvincing: and not surprisingly, sometimes wrong.

The algorithm has been changed so that it will not deadlock under

these circumstances.

2.1.3 Schneider [Sch]

The Schneider algorithm is not a true implementation of mutual ex-

clusion, but is an implementation of distributed semaphores; it is of a more

general nature than the others. By initializing the semaphore with a single

V-phase transition, the Schneider algorithm becomes an implementation of

mutual exclusion, where every process maintains global state. The Schneider

algorithm does not meet our definition of a fully distributed algorithm -- withiin
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a fully distributed algorithm, processes maintain only partial state.

To maintain global state, every process must acknowledge every mes-

sage sent to it by every other process. When a process seeks mutual exclusion,

it sends a P message to every other process in the system. Every process

which receives the P message acknowledges it by sending an ack message to

every other process. The P message is inserted into a local FIFO queue that

is ordered according to when a message is sent. When a P message becomes

fully acknowledged, and it is at the head of the FIFO queue, the process which

sent the P message has authority to enter the critical section, provided a cor-

responding V message is in the queue.

Upon exiting the critical section, a process sends a I/ message to every

other process. Every process which receives the V message acknowledges it by

sending an ack message to every other process. The V message does not have to

be fully acknowledged for the process at the head of the priority queue to enter

the critical section. However, the V message must still be fully acknowledged

to ensure that every process has received the message.

Failure in the Schneider algorithm can be discovered in two ways.

Since every message must be fully acknowledged, failure can be detected when

a message is not fully acknowledged within some timeout period. Failure can

also be detected when a process in the critical section fails to release it. ,

Since each process maintains global state, a recovering process must

obtain the message queue from a sponsor process. Rather than using the pub-

lished protocol, a recovering process sends a restart message to every process

in the system. Every process in the system will acknowledge the restart mes-

sage by sending an ack message to every other process. The sponsoring process

will send the message queue to the restarting process once it receives an ac-
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knowledgement from every other process. The restarting process will save all

messages sent to it by a particular process once that particular process has

acknowledged its restart. When it finally receives the message queue from its

sponsor, the restarting process will update the queue and discard duplicate

messages that are already in the queue.

2.1.4 Ricart and Agrawala [RA]

The RA algorithm is a fully distributed implementation of mutual

exclusion. When a process seeks mutual exclusion, it sends a request message to

all active processes. Any active process, which has sent a request message with

an earlier timestamp than the requesting process, defers its reply; otherwise, a

reply message is returned immediately. When a process exits its critical section,

a reply message is sent to all deferred processes. A process which has received

replies from all active processes in the system has authority to enter its critical

section. Priority in the implicit mutual exclusion queue is FIFO, based on the

time that a process sends its request.

The RA failure detection scheme requires each process to use a timer,

which is reset whenever a reply message is received by a process waiting for

the critical section. If the timer expires and a process has not received a reply

message, it probes all processes that have not yet responded to its request;

those processes not acknowledging the probe are considered to have failed.

One difference, between the published RA algorithm and the imple-

mentation in our simulations, is the restart mechanism after failure has oc-

curred. We are interested in studying rapid recovery from failure; the pub-

lished protocol is not an aggressive one. Therefore, rather than use some other

process as a sponsor, a restarting process probes all other processes in the sys-
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tern. After a timeout period, processes that have acknowledged the probe are

inserted into the request-queue of the restarting process; all other processes are

assumed to have failed.

2.1.5 Carvalho and Roucairol [CR]

The CR algorithm is a variation of the RA algorithm; it uses the

notion of implicit authorization. This notion implies that a process p, which

has received permission from a process q to use the critical section, retains

permission from q to use the critical section until a request is received from

q. The advantage of this protocol is that the number of request messages

that a process must send to obtain permission to enter the critical section can

be greatly diminished; in fact, a process, which has retained permission from

all other processes in the system, can immediately enter the critical section

without sending a single request.

Failure within the CR algorithm is handled in an identical fashion as

the RA algorithm. However, there is the opportunity for greater efficiency in

the CR algorithm. If an active process has attained permission from a process

which subsequently fails, the active process will not have to compensate for the

failed process. The implicit authorization protocol allows the active process

to assume that the failed process has simply granted it permission to continue

using the critical section.

Algorithm Implementation ME Determined State Kept
BS Centralized FIFO (receipt of req) Global*
Maekawa Hybrid FIFO (time or receipt of req) Partial
Schneider Distributed FIFO (time of req) Global
RA Distributed FIFO (time of req) Partial
CR Distributed FIFO (time of req) Partial

*controller only - all other processes know only their own state

Table 2.1: Summary of Distributed Mutual Exclusion Algorithms
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2.2 Model of the Underlying Distributed System

The algorithms we have described must be fitted to a model of an

underlying distributed system. We will study loosely-coupled networks where

message transmission time is significant and messages can be queued at the

destination.

2.2.1 System Structure

" The underlying distributed system is modeled by a finite directed graph.

" Each vertex in the graph is comprised of two parts:

1. a single non-terminating applications process running on a dedicated

processor

2. a communications interface processor (CIP)

" Applications processes are uniquely numbered from 1 to A.

" Each directed edge represents a direct, one-way communications channel

between a pair of processes.

" Figure 2.1 shows an example of a fully-connected distributed system.

2.2.2 Communications

" There is no shared memory; no process can directly access the memory

of another process.

" Processes communicate solely by sending and receiving messages. When a

process transmits the same message to multiple destinations, the message

is transmitted to other processes in order from lowest unique number to
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highest. For example, if process 1 sends a request message to all other

processes in the system, it first sends the message to process 2, then

process 3, and so on until the last copy of the message is sent to process

N.

" Each CIP has a buffer in which all messages from incoming channels

and all messages from its applications process are queued. This buffer is

assumed to be of sufficient capacity to hold all incoming messages.

" A CIP can process only one message at a time. A CIP can send a single

message onto a communications path or broadcast the same message on

any number of outgoing channels.

* Message processing consists of a CIP removing a message from an in-

coming communications path and examining its address, or examining a

message's address and then placing it onto an outgoing communications

path. Processing of a message occurs at the CIP of the sender, receiver,

and any intermediate vertices.

" Message processing time is denoted by tp. t. is a random variable having

a specified distribution.

" Messages transmitted from a given sender to a given receiver are received

in the order they are sent.

" Message transmission time between adjacent processes on a channel is

denoted by tmg. tM 9 is a random variable having a specified distribution.

* Messages are never lost or corrupted by the communications network.

" Messages that are part of the mutual exclusion algorithm are assigned a

higher priority than those of the underlying computation.
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CIP: conununications interface processor CIP

Figure 2.1: An Example of a Fully-connected Distributed System

2.2.3 Process Behavior

" Processes execute asynchronously; there is no common clock.

" All processes share a critical section which can be occupied by at most

one process at a time.

* A process exists in one of three discrete states:
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1. executing outside the critical section (NOS)

2. awaiting entry to the critical section (waiting)

3. executing within the critical section (CS)

" The initial state of a process is the state in which it is executing outside

the critical section (NOS).

* Figure 2.2 shows all valid state transitions.

* State transitions are instantaneous.

* The time a process spends outside the critical section is denoted by t,,,.

tn, is a random variable having a specified distribution.

" The time a process spends within the critical section is denoted by t,.

t,, is a random variable having a specified distribution.

" The time a process spends waiting for the critical section is a function of

the particular mutual exclusion algorithm.

• A process may send and receive messages in any state.

Figure 2.2: Process Behavior in a Fail-free Environment



24

Figure 2.3: Process Behavior in a Fail-prone Environment

2.2.4 Failure and Recovery

9 Applications processes may fail; the communications network, which in-

cludes the communications interface processors, does not fail.

9 Failure of an applications process will not interfere with the communica-

tions network.

9 Process failure is fail-fast and non-Byzantine [LSP].

* Process failures occur one at a time. All processes are equally likely to

fail.

* The interval between process failures is denoted in the system by tfaij.

tfail is a random variable having a specified distribution.
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" Failure requires the introduction of two additional process states:

1. failed

2. recovering

" Figure 2.3 shows the extended state transition diagram. Note that a

process may fail in any state except the failed state.

* The time a process remains failed is denoted by tdead, tdead is a random

variable having a specified distribution.

" A process can send priority messages to determine if another process

has failed, to elect a new controller or to rejoin the algorithm after fail

recovery.

" The time from when a process sends a message to another process, until

the sending process inquires whether or not the receiver has failed, is de-

noted by tdlay, tdlay is a random variable having a specified distribution.

" The time it takes a process to determine whether another process has

failed (i.e., the interval from the time a process inquires about a process

until failure is verified) is denoted by tprobe, tprob is a random variable

having a specified distribution.

* Failure of a process invalidates any local information pertaining to the

use of the critical section.

" In the failed state, a process cannot send messages, receive messages, or

execute instructions. Messages delivered to a failed process are lost.

" During recovery, a process reacquires information pertaining to the man-

agement of the critical section.
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* The time a process spends recovering is dependent on the particular re-

covery protocol chosen for the algorithm.

* A process always recovers to the state where it is executing outside the

critical section (NCS).

" To facilitate failure detection, processes can set local timers that expire

after some pre-determined interval.

2.3 Model of Mutual Exclusion Algorithms

In order to study the effects of varying topologies on distributed al-

gorithms, we must have a basis from which to make our computations. We

have chosen a state model, because system state is common to all distributed

algorithms [AB]. We can view a mutual exclusion algorithm in terms of its

state and how this state impacts its execution. Since this view can take place

independently of system topology, it is an ideal model for our purposes. We

can then overlay the model onto a particular topology to gather our results.

2.3.1 General Structure

Every mutual exclusion algorithm consists of two distinct parts:

1. How the next process is chosen to enter the critical section from among

the waiting processes when the critical section becomes available.

2. How the chosen process recognizes that it has authority to enter the

critical section.

We can observe that every leader election algorithm consists of two very similar

parts [Gar]:
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1. How the next process is chosen to be leader.

2. How the system is informed that a new leader has been chosen.

However, leader election algorithms contain two important differences from

mutual exclusion algorithms [Gar]:

1. Leader election algorithms must inform every process in the system of

the identity of the new leader.

2. Fairness is not a requirement of leader election algorithms; i.e., some

processes may never become leader.

We can think of the first part of every mutual exclusion algorithr, as choosing

a leader; this leader will be the next process to enter the criticz.l section. The

second part consists of the newly chosen leader being able to determine that it

has been chosen to enter the critical section.

Definition: The local state of some process i is denoted by si:

si E {CSi, NCS, waitingi}

Definition: The state of the distributed system, S, is the set of states

consisting of the state of every process in the system:

S :- (s, IiS2, S3 ,..., sn) = USi

Definition: A valid system state, S, is a state which has at most one

occurrence of CS:

(3 a process i :: si = CS,) = (-,3 a process j : j i :: s = CS,)
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Any state transition that might take the system into an invalid state is not

permitted.

global state partial state own state

i i i

state = Us, state $ Us, state = a,

Figure 2.4: Spectrum of Local States

Figure 2.4 reveals that a process that maintains global state has a

"snapshot" of the system state [CL]. 2 A process that maintains partial state

has something less than global state, but more than its own state; its partial

state is not necessarily a subset of the global state. For example, a process may

not know what state another process is in; however, it may know what state

another process isn't in. Finally, a process may be concerned only with its own

particular state, oblivious to the state of other processes within the system.

If every process in a distributed system maintains global state, then

overhead is accrued due to the large number of messages that must be propa-

gated throughout the system to maintain global state at each process. If every

process maintains only its own state, then there is negligible overhead accrued;

messages are only exchanged between a controller with global state and the

active processes of the system seeking access to that global information. A

process with global state has no need to consult a controller; in contrast, a

process with no state will accrue overhead in the form of the message transmis-

sion time necessary to receive state from another source. An algorithm that,

2This snapshot does not include the state of the channels.
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falls somewhere between the two ends of the local state spectrum may attempt

to decrease the number of messages that must be propagated to update lo-

cal state, decrease message transmission time necessary to obtain state from

another source, or decrease both.

In mutual exclusion, we can think of applying a function f to the

system state, which chooses the next process to enter the critical section. f is

applied to the state S of the computation, returning a decision d, which is the

next process to enter the critical section:

f(S) --+ d

f may be a distributed function, in which case all processes in the system apply

f to their local states. If each process maintains global state, then f will tell

every process which one has been chosen to enter the critical section. If each

process maintains something less than global state, then f may tell only one

process that it has been chosen to enter the critical section: f applied to the

local states of the other processes will only tell them that they have not been

chosen. If f is a centralized function, then f is applied only to the local state

of the controller, which has global knowledge of the system. In this case. the

controller learns which process is chosen to enter the critical section, and this

knowledge is then relayed to the chosen process.

Measuring the efficiency of a mutual exclusion algorithm is dependent

on:

1. How quickly messages can be propagated throughout the distributed svs-

tem so that f can be applied to the updated state.

2. How quickly the decision reached by f can be relayed, if necessary, to the

chosen process.
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We have already noted that the speed with which a process updates local state

depends on the amount of state maintained by each process in the system.

When f is a distributed function, there is no need to relay the decision once

f has been applied; every process derives a result. However, when f is a

centralized function, the decision d must be relayed to the chosen process.

Only upon receipt of d can the chosen process exit the waiting state and enter

its critical section.

2.3.2 Application of the Model to Mutual Exclusion Algorithms

How efficiently messages can be propagated throughout the distributed

system, so that local state is updated and f is applied, and the decision d then

relayed to the chosen process depends on two properties of the distributed

system:

" the state maintained by each process

" the topology of the system network

The two ends of our performance spectrum are centralized and fully distributed.

A centralized implementation maintains no state other than its own. Each

process is required to coordinate with a central controller, which maintains

global knowledge of the system state, to determine if it has authority to enter

the critical section. A process with a distributed implementation may maintain

global or partial state; in either case, a process maintains sufficient local state

to determine whether or not it has authority to enter the critical section. We

find that if we can predict the performance of these two ends of our spectrum

on a particular topology, then we can use the information gained from their

results to predict the performance of a hybrid implementation as well.
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For example, on a fully-connected topology with equivalent tm,9 times

between every node of the network and negligible tp times, we can make the

claim that 2 tsg is required between every execution of the critical section in

a centralized algorithm with maximum contention for the critical section. The

process exiting the critical section sends a release message to the controller.

Upon receipt of the release message, the controller sends a grant message to

the process at the head of the mutual exclusion queue. Likewise, we can claim

that tmg is required for a fully distributed algorithm. The process exiting the

critical section sends a reply message to all deferred processes. Upon receipt

of the reply message, the process at the head of the implicit mutual exclusion

queue enters the critical section. Hence, we can expect twice a- much time

between every execution of the critical section in a centralized algorithm as

in its fully distributed counterpart. Simulation results exactly confirm these

observations. We can now predict how a hybrid algorithm, such as that of

Mackawa, might perform on a fully-connected topology.

There are three possible scenarios that can occur in the Afaekawa

algorithm when a process exits the critical section and releases a node. First,

the process that receives the release can lock the node and enter its critical

section. Since there are (K - 1) processes which receive the release directly

from a process, we can expect this to happen with probability -.. Second, a

process may release a node to itself, and a lock is then relayed to the locking

process. W~e can expect this to happen with probability -L. Finally, the process

that receives the release may send a lock to the locking process, and that

process then enters its critical section. We can expect this to happen the

remainder of the time, or with probability "'. In the first two cases, the

interval between critical section executions is tmg, as it would be in a fully

distributed implementation. In the third case, the interval between critical
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section executions is 2 tmg, as it would be in a centralized implementation. We

can anticipate the time between each execution of the critical section for the

Maekawa algorithm to be:

K N-K 2N-K

Nt + N )2mg N ti 9

For a system with 31 processes, we can expect 2 tg = 1.8 06 tmg. Simula-

tion results show an actual time of 1.727t,,,; the relative error of our estimate

is 4.6%.

We can now rank the performance of the three algorithms by the

expected interval between successive executions of the critical section:

1. RA - tins

2. Maekawa -2N-Ktm,

N mg

3. BS - 2t,,sg

The interval between successive executions of the critical section captures our

notions of updating state and, if necessary, relaying the decision as to which pro-

cess has authority to enter the critical section. For example, the RA algorithm

spends tm,, updating state; no relay is necessary, because f is a distributed

function. In the BS algorithm, tmsg is required to update the controller's local

state; because f is a centralized function applied only by the controller, another

tM, is required to relay the decision as to which process has been chosen to

enter the critical section.

Utilization of the critical section is the percentage of observed time

that the critical section is occupied by any process. The ranking just presented

is consistent with utilization of the critical section. If we set the mean service
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time of the critical section S,, equal to 1.0, then wecan derive utilization using

the utilization law from queueing theory:

U,.= X,:, S. =

X is the throughput, or number of critical section usages per time unit. We can

measure the throughput of the critical section by noting there is one execution

of the critical section for each critical section usage. If we add the time spent

in the critical section to the mean interval between successive executions of

the critical section, we obtain throughput. Subsequently, we can compute

utilization.

1. URA XRA --

2. bUAoekawa -- Xaekawa -- t, s 1 7-

3. UBS = XBs-
tc,+

2
trag

We will use this model to examine the performance of each algorithm

on varying topologies when performance metrics are discussed in detail in Chap-

ter 3. Our intention is to derive the interval between successive critical section

executions. This interval is easily translated into utilization as just shown.



Chapter 3

Analytical Results for Fail-free Systems

ATe find that the metric of counting the number of messages sent for

each use of the critical section is not by itself adequate to determine perfor-

mance. We present a scenario where the algorithm that performs with the

least efficiency sends the fewest messages, and the algorithm that performs

most efficiently sends the most messages. Closer analysis of this metric leads

us to examine which processes receive the messages and which processes send

them for each use of the critical section. Additionally, we consider how these

messages are distributed over time. An entirely different approach to measur-

ing performance requires viewing the critical section as a shared resource for

which processes throughout the distributed system contend. The critical sec-

tion can be modeled using this approach by the classical "queue/server pair"

from queueing theory. This view leads us to choose utilization as the metric of

choice for ranking our algorithms.

We also find that, by counting the length of the chain of messages and

using heuristics to measure the cost of message processing time and contention

within the distributed system, we can accurately estimate the steady-state per-

formance of our algorithms on fully-connected, ring and star topologies. Finally,

we show that our approximation method accurately assesses the performance

of a newly-published, tree-based distributed mutual exclusion algorithm.

34
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3.1 Performance Metrics

The current metric in use to compare the performance of distributed

mutual exclusion algorithms is the number of messages sent for each usage of

the critical section. Supposedly, the fewer messages required, the better the

algorithm. The widespread use of this metric is not surprising. The need to

exchange state information via messages is an important factor in the perfor-

mance of distributed systems. The interconnection network is a shared resource

whose finite capacity should not be wasted. From a practical standpoint, the

number of message transmissions per critical section usage is a well-defined and

easily calculated quantity. But this metric only measures the cost of propa-

gating messages throughout the distributed system to update the local state

of each process and ignores the tradeoff that may exist if a process maintains

minimal state. For example, if the decision as to which process has priority

to enter the critical section must be relayed to the chosen process., that extra

transmission may negate any gains from limiting the number of messages sent

to exchange state information.

To illustrate that the current metric measures only the cost of up-

dating local state, we will look at a fully-connected topology where message

processing is not a factor in the efficiency of the network. Under this assump-

tion, we can show that the metric of number of messages sent per critical section

usage does not accurately assess the performance of distributed mutual exclu-

sion algorithms. Rather, the time to relay the decision as to which process is

chosen to enter the critical section is the determining factor in performance.

With the following assumptions, we can derive some simple analytic results:

1. The time, to,, that any process spends in its critical section is finite and
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constant:

Vi : 1 < i < N :: t =[i]=tc,

where tM,[i] is the time spent in the critical section by process i.

2. The time, tmog, that a message takes to transit the network between any

two adjacent processes is finite and constant:

ViVj: 1 < i,j < N :: t,.g[i,j] = tmg

where tmg[i,j] is the time it takes a message to go from process i to

process j.

3. Message processing time, tp, is negligible.

4. When a process exits its critical section, there is always another process

waiting to acquire the critical section (notice that this docq no, preclude

a system with a single process, whereupon exiting its critical section,

immediately attempts to acquire it again).

5. Processes never fail.

No assumptions are made about the length of time a process spends in its

non-critical section nor how many processes are in the system.

When a process in the BS algorithm (recall that BS is a central-

ized implementation) exits the critical section, a release message is sent to the

controller. The controller accepts the release message and then sends a grant

message to the next process with priority to enter the critical section. The

result is that time equal to 2 tmy is required to effect mutual exclusion between

executions of the critical section. In the RA algorithm, (RA is a fully dis-

tributed implementation), a reply message is sent directly to the next process
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that will enter its critical section; this process receives the reply message, and

immediately enters its critical section. The result is time equal to tmg to effect

mutual exclusion.

We can view this result more clearly with response time:

N - average number of processes awaiting mutual exclusion when a process

joins the queue

R - response time: from when a process requests mutual exclusion until it is

granted

Under our assumptions, R is equal to the time it takes for N processes to

execute their critical sections plus the time it takes to grant permission for

N processes to enter their critical sections. If we assume that the average

number of processes awaiting mutual exclusion, N, is identical for the BS and

RA algorithms, we can make the following comparison:

NBS = NRA

RBS = (N)t, + 2(N)t,,,a = (N)(tc. + 2tmag)

RRA = (N)t,. + (N)t,, = (N)(t . + tin,9)

We can observe that RBS is (N * fog) greater than RRA. Actually, since the

time between critical section executions is greater for the BS algorithm than

for the RA algorithm, NBS will be larger than NRA; hence, the difference in

expected mean response times will be even greater than just shown.

We can establish a similar result for the response time of the Maekawa

algorithm. Our previous analysis in Section 2.3 assumed that N was equal to

the number of processes in the system: this also established K as the number



38

of processes in each subset awaiting mutual exclusion. We now expect N to be

smaller than the number of system processes. But just as N will be smaller, K

will also be proportionately smaller. Consequently, we can still use our previous

analysis to observe:

K- K2N - K t

R,%aI = (N)(t 8 + K tmsg + NK )2tms) = (N)(tc, + N tis 9 )

We can conclude that the fully distributed algorithm of RA performs

best, the centralized algorithm of BS performs worst, and the hybrid algorithm

of Afaekawa performs somewhere in between. Since Maekawa sends fewer mes-

sages than RA for each use of the critical section, and the centralized imple-

mentation of BS sends fewest of all, it is clear that other metrics, in addition

to the classical "messages sent", must be found to compare performance. This

observation has also been made in reference to centralized and fully distributed

implementations of the committee coordination algorithm [Bag].

We can build on the idea of the number of messages sent per usage

of the critical section with the addition of two new metrics. Because messages

burden the sites in the distributed system that must transmit and receive them,

we consider the number of messages that must be transmitted or received by

each process in the system for each particular mutual exclusion algorithm.

And, because mutual exclusion messages contend for the same resources as

other messages, we consider how these messages are distributed over time.

A different approach to selecting performance metrics involves consid-

ering the critical section as a shared resource for which processes throughout

the distributed system contend. The critical section can be modeled by the

classical "queue/server pair" from queueing theory. The server represents the
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critical section which can "serve" only one process at a time. The queue rep-

resents the set of processes wishing to use the critical section.

Using this model, we immediately recognize four performance met-

rics: the number of critical section usages per time unit (throughput), the

elapsed time between requesting the critical section and subsequently exiting

the critical section after acquiring it (response time), the number of processes

waiting to use the critical section (queue length), and the proportion of time

the critical section is in use (utilization).

The utilization, U, and throughput, X, are related by the utilization

law,

U=XS

where S is the mean time the critical section is held. Given S, this law allows

us to study only one or the other of these metrics. Any conclusions obtained

from studying one of the two measures can be immediately translated into the

other using the utilization law. The algorithms will be ranked the same by

these two metrics.

Similarly, the mean queue length, Q, and mean response time, R, are

related by Little's Law:

Q = RX

Given X, either the queue length or response time, but not both, must be

studied. However, we have elected not to study either of these metrics. We

are not neglecting these metrics because they are unimportant. Rather, we can

argue that if our particular algorithm has a greater utilization of the critical

section than another algorithm, then that algorithm has a shorter queue length

and response time as well. Since it is our intention to rank these algorithms,

and studying Q and R lends no further insight into our ranking, we choose to
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ignore them. This decision is discussed in more detail later in this chapter in

Section 3.4.

Finally, we will examine an algorithm's performance on varying topolo-

gies. Using our model of mutual exclusion algorithms, we will rank each algo-

rithm according to its efficiency on fully-connected, ring and star topologies.

We propose the five following metrics to measure the efficiency of

mutual exclusion algorithms:

1. spatial distribution of messages sent per use of the critical section

2. spatial distribution of messages received per use of the critical section

3. temporal distribution of messages sent per use of the critical section

4. utilization of the critical section

5. robustness (how an algorithm's performance is affected by topology)

3.2 Spatial Distribution of Messages

Two metrics which may be useful when message processing time is

significant are the number of messages sent or received per use of the critical

section. Table 3.1 and Table 3.2 reveal which processes do most of the work to

achieve mutual exclusion.

Algorithm Controller User of CS N - 1 Other Processes Total Msg
BS 1 2 0 3
Maekawa - 2vN'"  MX 4 v/
Schneider - 2*(N- 1) 2*(N- 1) 2*N*(N- 1)RA -- N-I 1 2*(N- 1)

CR- 0...(N- 1) lor0 0.-.2*(N- 1)

Table 3.1: Spatial Distribution of Messages Sent for Mutual Exclusion
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Algorithm Controller User of CS N -1 Other Processes Total Msg
BS 2 1 0 3
Maekawa - 2 ,'N' 2 I 4 N/'N"
Schneider -- 2*(N-1) 2*(N-1) 2*N*(N-1)

RA -- N-1 1 2*(N-1)
CR- 0...(N- 1) lor0 0...2*(N- 1)

Table 3.2: Spatial Distribution of Messages Received for Mutual Exclusion

The tables show us that in the BS algorithm, processes that do not

seek access to the critical section process no messages. This is the ideal im-

plementation of mutual exclusion: a process that does not seek access to the

critical section never processes a single control message. We can observe that

the CR algorithm is next best. In fact, once a process in the CR algorithm has

replied to all other processes that seek access to the critical section, it will not

process another control message until it desires access to the critical section for

itself. The RA algorithm also measures up well; a process that is not gaining

access to the critical section sends and receives only one message for each entry

to the critical section. In contrast, the Schneider algorithm equally burdens

every process, even those that never seek access to the critical section. A pro-

cess that never seeks entry to the critical section will find itself processing a

number of messages equal to the process that gains entry.

When we look at processes that seek access to the critical section, we

can draw similar conclusions. In the BS algorithm, the process that seeks access

to the critical section sends two messages and receives one. Hence, the user of

the critical section does minimal message processing. The controller is required

to send a single message and receive two. The Maekawa algorithm requires the

process seeking entry to the critical section to send and receive fewer messages

than the RA algorithm any time N exceeds 4. The CR algorithm will require.,

at most, the same number of messages as the RA algorithm: in times of light
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contention, especially, we expect the CR algorithm to do better than its RA

counterpart. The Schneider algorithm requires the process seeking access to

the critical section to send and receive at least twice the number of messages

as its competitors. If message processing time is significant, we can expect the

Schneider algorithm to be less efficient than the other algorithms.

3.3 Temporal Distribution of Messages

Another metric that deserves consideration is the temporal distri-

bution of messages sent to effect mutual exclusion. The following series of

timelines show where surges in the number of messages sent occur over time in

a fail-free environment with maximum contention for the critical section.

These figures show the types of messages employed by each algorithm.

The messages above the timelines are requests made at arbitrary times by

processes in the distributed system; some algorithms require these messages to

be acknowledged. The messages below the timelines are messages sent when

a process exits the critical section; these messages are always sent when the

critical section transitions from busy to idle. Again, an algorithm may require

these messages to be acknowledged. Other algorithms, such as those of BS and

Maekawa, require a controller to relay state information to the next process

waiting to enter the critical section.

Figure 3.1 shows that, in the centralized implementation of BS, bursts

of messages do not impact the system. The claim that a centralized mutual

exclusion algorithm is inefficient because the controller becomes a bottleneck

appears to be unfounded. When the system reaches steady-state as it has in

Figure 3.1, requests for the critical section and releases occur at approximately

the same rate. Therefore, contention at the controller is minimal and is not a
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major contributing factor to its performance. Rather, the lesser efficiency of

the BS algorithm can be attributed to the number of messages sent between

every critical section execution (which we have shown to be two), which is a

function of the state maintained by each process in the system.

Figure 3.2 reveals that relinquish messages are unnecessary when max-

imum contention occurs in the Maekawa algorithm.

In contrast to the timeline of the BS algorithm in Figure 3.1, the

timelines shown in Figure 3.2 through Figure 3.5 show that bursts of messages

flood the system at regular intervals for virtually every distributed implementa-

tion. Figure 3.3 reveals that the Schneider algorithm continuously sends large

numbers of messages into the network. Large numbers of messages can signif-

icantly impact the underlying computation of the system if control messages

are routed through a small number of network nodes.

If large volume traffic significantly impedes the performance of a par-

ticular network, the BS algorithm may very well prove preferable to its fully

distributed counterparts.

requet request

I 1

CS status: idle busy idle busy idle tm

1 1 1 1

release grant release grant

Figure 3.1: Temporal Distribution of Messages Sent for Buckley and

Silberschatz's Algorithm
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request failed request failed

VN vr V-N V7

CS status: idle busy idle busy idle timeV' T v"N'
release locked release locked

Figure 3.2: Temporal Distribution of Messages Sent for Maekawa's

Algorithm

P aok P ack

(N-i) (N-i)
2  (N- i) (N-i)

2

CS status: idle busy idle busy idle time

(N-i) (N-i) 2  (N-i) (N-i) 2

V ack V ack

Figure 3.3: Temporal Distribution of Messages Sent for Schneider's

Algorithm

request request

(N- I) (N- 1)

CS status: idle busy idle busy idle time

(N- 1) (N- 1)

reply reply

Figure 3.4: Temporal Distribution of Messages Sent for Ricart and

Agrawala's Algorithm
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request request

(N-i) (N-i)

CS status: idle busy idle busy idle . 10 time

(N-1) (N-1)

reply reply

Figure 3.5: Temporal Distribution of Messages Sent for Carvalho and

Roucairol's Algorithm

3.4 Utilization of the Critical Section

Our fourth metric is utilization of the critical section. Utilization is

defined to be the percentage of observed time the critical section is occupied

by any process.

The metric of utilization was chosen over all other metrics as the basis

for ranking distributed mutual exclusion algorithms. The time between critical

section executions, response time and queue length are other candidates for

providing the basis for our ranking. We will now examine why utilization is

the appropriate metric for our purposes.

We would like to assign a value to an algorithm, creating what might

be thought of as a fingerprint of its performance. If two algorithms have the

same fingerprint, then we should be able to claim that they are equivalently

efficient. Likewise, if the fingerprint of one algorithm is in some way smaller

than the fingerprint of another algorithm, we should be able to say that the

efficiency of the one with the smaller fingerprint exceeds the efficiency of the

other. Two questions arise: does such a fingerprint exist; and if so, how might
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one compute it.

The reason for computing such a fingerprint is that once the finger-

print is obtained, a ranking immediately follows. Then, instead of having to

compare each algorithm to every other algorithm to see how it performs rel-

ative to all the others, the fingerprint lends immediate insight into how the

algorithms stack up against one another in terms of performance.

The way to create such a fingerprint is to compute a ratio using

a common metric for each algorithm. We have chosen to compute a ratio

consisting of a common metric for each algorithm and the same metric of the

ideal mutual exclusion algorithm.1 The ideal mutual exclusion algorithm, as

we define it, continuously utilizes the critical section; that is, there is never a

time when the critical section is idle. This implies that there is no significant

time from the moment when one process exits the critical section, until the

moment the next process enters it. That is, the interval between successive

executions of the critical section is 0. This observation immediately makes it

clear why we cannot use the metric of interval between successive executions of

the critical section as a basis for computing the fingerprint: the ratios 0
interval

and interval provide no basis from which to compute a value. Utilization, on the

other hand, provides a simple basis from which we can compute our fingerprint.

For the ideal algorithm, Uideal = 1.0, where U is utilization. By taking

the ratio of Uidal over the utilization of a given mutual exclusion implemen-

tation, we can immediately determine how that algorithm performs relative to

the ideal implementation. By then computing this ratio for every algorithm, we

'The notion of an ideal algorithm is not an original one. The notions of idealistic and
realistic are commonly used in reference to architectures.
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can create a fingerprint for each algorithm and immediately establish a ranking

between them.

For example, when message processing time is negligible, successive

entries into the critical section for the RA algorithm occur at the rate of once

every (tca + tmg) time units when there is always a process waiting in the

mutual exclusion queue; or more precisely,

tc, + tM3a

where Xc, is the throughput of the critical section. By the utilization law,

Ucs, = .'c Sc. = Sc3
to8 + tM8g

But we know that S, -- tc= = 1.0, so we have:

1.0 1
1.0 + t,.n9

which reflects the utilization of the RA algorithm. We can derive a similar

result for the BS algorithm:

1
U, = 1.0+ 2tmsg

By assuming tmSg = 0.1, we can now create the following fingerprints:

Uideal _ 1.0 + t,, 9 _ 1.1

URA 1.0

Uideal = 1.0 + 2tmsg = 1.2
UBS 1.0

The ranking of the algorithms follows immediately, and we can claim that

the RA algorithm utilizes the critical section more efficiently under our given

assumptions. Note that the fingerprint can be computed independently of the

number of processes in the network. Our only assumption is that a process is
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always waiting in the mutual exclusion queue when a process exits the critical

section.

We now address the issue of why one should choose utlization as a

metric instead of response time or queue length. For mutual exclusion, there

is only one ideal utilization: 1.0. However, the queue length and response

time for the ideal algorithm vary according to the number of processes in the

distributed system; when the arrival rate of processes and the service time of

the critical section are held constant, increasing the number of processes in the

system increases both queue length and response time. This observation implies

that the ideal metric would have to be recomputed each time the number of

processes in the system changes. In addition, since the ideal value for the

metric is inconsistent for systems with differing numbers of processes, there is

no common basis on which to compare the performance of an algorithm with

itself when it runs on two networks where the number of processes is not the

same. Hence, the ideal utilization is not only easy to compute (it's always 1.0),

but it provides a common basis for the comparison of the performance of all

mutual exclusion algorithms in all given distributed systems, independently of

number of processes.

We have also noted in Section 2.3.2 that our ranking remains un-

changed in systems with maximum contention for the critical section whether

we rank our algorithms using response time, queue length, utilization or time

between critical section executions. Hence, our motivation in selecting utiliza-

tion as our metric of choice is derived primarily from our ability to compute a

meaningful fingerprint from it.
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3.5 Effects of Topology

We would like to estimate how an algorithm performs on varying

topologies in order to determine if a particular algorithm is suitable for all net-

works, or if perhaps it is suited only for a particular topology. We will use the

model of mutual exclusion algorithms developed in Chapter 2 to derive results

to answer this question. We find that if we estimate the time between critical

section executions for the centralized and fully distributed implementations, we

can use these results to approximate the performance of the Alaekawa hybrid

implementation. We will specifically look at three very different topologies:

fully-connected, ring and star. The fully-connected topology represents the

ideal topology in the sense that the diameter of the network is one. The ring

topology is the other end of the spectrum, giving us the greatest diameter pos-

sible short of a network where all processes are linked by a straight line. Finally,

the star topology falls somewhere in between with a network diameter of two:

an additional factor of the star topology is its use of a "hub" through which all

traffic is routed. We will look at three of our algorithms: BS, Alaekawa, and

RA. We will not look at the CR algorithm, because it is so similar to the RA

algorithm. We will not investigate the performance of the Schneider algorithm;

it performs so poorly in a fail-free environment compared to the others that

it is unlikely anyone will seriously consider it for implementation. Therefore,

we limit our investigation of the CR and Schneider algorithms to simulation

results presented in Chapters 4 and 5. Throughout our analyses, we assume

that every process is equally likely to seek access to the critical section.
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3.5.1 Fully-connected Topology

Figure 3.6 shows a fully connected topology. We have already rated

our algorithms on a fully-connected topology when message processing time is

negligible:

1. RA - tm g

2. Maekawa -2Ktm,

3. BS - 2tmg

We can see that this ranking remains unchanged, regardless of the number of

processes in the distributed system. Without considering the additional cost

of message processing time, we can never measure the impact that the number

of messages will have on the network. Therefore, any model that we develop

must account for the number of messages sent by an algorithm. Additionally,

since messages "collide" in the network, any model that we develop must also

account for contention. We now show that we can measure message passing

overhead due to the sending of messages as well as contention in the network.

When message processing time was not significant, our results were

computed by the simple formulae given in our ranking. When message pro-

cessing time becomes significant, our formulae are different. Our first task is

to determine the length of the mutual exclusion queue in our algorithms. We

can derive the queue length using an M/M/1/oo/m queueing formula. An

M/M/1/oo/m queueing formula can be derived under the following assump-

tions:

1. single server, infinite queue capacity
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2. first come, first served queueing discipline

3. negative exponential inter-arrival time

4. negative exponential service time

5. closed system with m processes

6. system is in steady state

.1

cCI

CIP: co.:unicatnons interface processor c nP

Figure 3.6: An Example of a Fully-connected Distributed System
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We violate the exponential service time assumption; but as we shall see, we still

derive excellent results for a fixed, constant service time. The queue length,

though technically unbounded, will never exceed m since we have a closed

system. The queueing network we want to model is shown in Figure 3.7.

forced idle period forced idle period

r- r -- - l
NCS Xmit

req* II re rn

I INCS Xit
N req

CS queue

Figure 3.7: Queueing Network for the BS Algorithm

The forced idle periods make it impossible to derive exact analytic results.

When a process exits the NCS server in the queueing network of Figure 3.7, it

must wait time equal to xmit req until it can enter the mutual exclusion queue.

Similarly, when it exits the queue, the process must wait time equal to xmit rel

followed by xmit grant before it cap enter the CS server. The queueing network

that we can model and for which we can derive analytical results is shown in

Figure 3.8.

In the queueing network of Figure 3.8, the time xmit req has been

ignored, and the times xmit rel and xmit grant have been incorporated into

CS. The time xmit req is ignored, because the time spent within the NCS is

so much larger in comparison; we also have the problem that NCS has an

exponential distribution, while xmit req is fixed and constant. On the other

hand, the times xmit ret and xmit grant are fixed, constant and significant, in
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comparison to the fixed and constant value of CS. We cannot ignore them,

and we are able to account for their effect by making them part of CS. We

can now present our M/M/1/oc/m formula and derive analytical results for

the network shown in Figure 3.8. The following queueing formula was derived

using a Markov chain.

NCCs

CS queue

Figure 3.8: Queueing Network for Analytical Results

A = arrival rate of requests for the critical section

S = service time of the critical section

p(n) = probability that there are n processes in the queue

1
p(n) =

(m -n)
p(n) (m -m n)! ( AS ) 'p ( O)

Q= (n*p(n))
n= 1

Each xmit in our network represents a single message transmission;

each transmission can be thought of as a link in a chain of messages between
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successive entries to the critical section.2 In a centralized implementation, for

example, the length of the chain of messages between critical section executions

is two. This leads to the following minimum delay between critical section

executions:

t p + tmsg + tp + tp + ting + tp = 2 tmsg + 4tp

Let's examine how we derived this formula. A message is placed by the sender's

CIP onto its outgoing communications path in time tp. It takes time tmsg

to arrive at the receiver. The receiver's CIP removes the message from the

incoming communications path and hands it off to the receiver in time tp.

When the receiver replies, an equivalent sequence of events takes place in the

opposite direction. If t,,_ = 0.1 and tp = 0.005, then we compute So, in our

queueing formula as tcs + 2tms9 + 4tp = 1.0 + 0.2 + 0.02 = 1.22 time units.

For a fully distributed implementation, the length of the chain of mes-

sages between critical section executions is one. Our minimum delay between

critical section executions is:

tp + tmsg + tp = tis 9 + 2t,

If t ,9 = 0.1 and tp = 0.005, then we compute So, in our queueing formula as

ts + tmsg + 2tp = 1.0 + 0.1 + 0.01 = 1.11 time units.

Our next step is to determine a value for A. Since each process delays

in the NCS for a mean time of 10.0 time units, we can compute the arrival rate

into the queue as - = 0.1 arrivals per time unit. This value is constant for all

uses of the M/M/1/oo/m queueing formula.

2 The notion of the length of the chain of messages between events in a distributed system
was first advanced by G. Buckley in her PhD proposal at the University of Texas at Austin.
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The result we obtain from the M/M/l/oc/m queueing formula is

especially important for the RA algorithm, because the queue length tells us

how many reply messages must be sent when a process exits the critical section.

It is important for all of our algorithms for a second reason: it enables us to

model contention at the CIP when a message releasing the critical section

arrives at its destination. An example will show how this can be done.

We will use our M/M/1/oo/m formula to derive the mean queue

length for m = 31 and S,, = 1.11 for the RA algorithm:

QRA = 21.990992 ; 22

This number reveals that the average length of the mutual exclusion queue

in the RA algorithm is about 22 processes. When a process is in the mutual

exclusion queue, it does not send any messages. It will defer a reply to any

requests made subsequent to its own. If the mean queue length is 22 processes

for a system with 31 processes, then we can argue that the only processes

that will send messages into the system are the 9 processes not waiting for

the critical section. A heuristic that we can employ is to assume that these 9

processes will contend for a common communications path. Using our queueing

formula, we can compute the mean number of messages on the communications

path at any one time. We can then assume that this mean value represents

the worst-case contention at the CIP, since all messages sent to a particular

receiver in a fully-connected network converge at a common destination.

We can now measure contention, using the M/M/1/oo/m queueing

formula, for the communications path between the requesting process and every

other process by letting m = 9 and Sp,,th = 0.11. We have selected Sp~th = 0.11,

because a message will spend at least 0.11 time units on the comnunications
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path between adjacent processes when t4ns = 0.1 and tP = 0.005.

Qpath = 0.10722

We get worst-case contention at the CIP by assuming that Qpath is equal to the

number of messages at the CIP when the message releasing the critical section

arrives.

When the RA algorithm releases the critical section, the message re-

leasing the critical section to the next entering process will be sent, on the

average, half-way through the outgoing messages. For a system with 31 pro-

cesses, we have computed Q,, = 22. The reply message can expect to find a

queue length at the CIP of 0.10722. Our time between critical section execu-

tions for the RA algorithm can now be computed as follows:

-t- p + t,g + Qciptp + tp = 0.1630351
2

Simulation results show 0.158384 time units, for a relative error of 2.9%.

For 21 processes, we can make the following computation:

Qc, = 11.993402 - 12

QCIP = 0.107022

Our time between successive executions of the critical section becomes:

Q tp + tmnag + Qclptp + ip = 0.1355351

2

Simulation results show 0.132984 time units, for a relative error of 1.9%. The

M/M/1/oo/m queueing formula used in conjunction with our heuristic appears

to give excellent results for the RA algorithm.

We can make similar computations for the BS algorithm. We can

again assume that those processes waiting in the mutual exclusion queue send
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no messages; only the processes executing outside the critical section will send

messages in the form of requests. Since all messages go to the controller, we

can still use our heuristic to measure contention at the CIP of the controller.

For m = 31 and S,, = 1.22:

Q,, = 22.803282 23

QcIP = 0.094040

The time between successive executions of the critical section is:

2tmsg + 4tp + Qclptp = 0.2204702

Simulation results show 0.211901 time units, for a relative error of 4.0%.

For 21 processes, our computation becomes:

Q,, = 12.803960 t 13

QcIp = 0.09040

The time between successive executions of the critical section is:

2tng + 4tp + Qcjptp = 0.2204702

Simulation results show 0.207932 time units, for a relative error of 6.0%. The

results derived by our model are conservative. Our results will be conservative,

because in our simulations the process co-located with the controller can ex-

change messages with the controller in negligible time. This observation leads

us to identify another heuristic that we can apply to make the results of our

model more accurate: about 1 of every 31 messages sent to the controller will

be sent instantaneously in a system with 31 processes; similarly, about 1 of ev-

ery 21 messages sent to the controller will be sent instantaneously in a system
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with 21 processes. Therefore, we can reduce the result obtained by our model

for m processes by - Using this heuristic, we compute for 31 processes a mean

of 0.213358 time units between each execution of the critical section, for a new

relative error of 0.7%; for 21 processes, we compute 0.2099716 time units, for

a new relative error of 1.0%.

We can conclude that this model yields excellent results for the RA

and BS algorithms on a fully-connected topology. We now use these results to

estimate the performance of the Maekawa algorithm.

With m = 31, K = 6, Imsg = 0.1 and tp = 0.005, we can initially

compute a rough approximation of the performance of the Maekawa algorithm.

By assuming performance equal to the RA algorithm ;- of the time and per-
N

formance equal to the BS algorithm N47 of the time, we compute:

K N -K 6 25
.11( K) + .22( - )= .11(6) + .22(-) = 0.1987097

NN 31 31

We now set S,, = t,, + 0.1987097 = 1.1987097 and compute the following

results with our M/M/1/oc/m queueing formula:

Q,, = 22.6577 - 23

Qc'jp = 0.09404

In our analysis of the AMackauwa algorithm in Section 2.3.2, we cited three sce-

narios for the Makawa algorithm and assigned a probability for each one. Our

times between critical section executions for the three scenarios become:

K-i K+lK tp + tmsg + Qclptp + t P = 2 tp + tm,8 g + Qctptp = 0.1179702

tinsg + 2tp + Qctptp = 0.1104702
K-I K +5

K Ip + 2t.a + 3 tp + Qc.lptp 2 tp + 2tmsg + Qciptp = 0.2279702
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Algorithm tI Simulation Results Analytical Results Relative Error
BS .005 .207932 .209972 .010

.010 .226261 .229554 .015

.015 .249974 .249007 .004

.020 .263759 .268669 .019

.025 .284512 .288409 .014
RA .005 .132984 .135535 .019

.010 .170289 .176032 .034

.015 .215405 .214187 .006

.020 .249163 .252438 .013

.025 .289648 .290785 .004
Mae .005 .189798 .200947 .059

.010 .218217 .221985 .017

.015 .243800 .245021 .005

.020 .270454 .267817 .010

.025 .295950 .290924 .017

Table 3.3: Application of the Model to 21 Processes in a Fully-connected
Topology

Algorithm *p Simulation Results Analytical Results Relative Error
BS .005 .211901 .213358 .007

.010 .231104 .233257 .009
.015 .250220 .253023 .011
.020 .269114 .273002 .014
.025 .289619 .293060 .012

RA .005 .158384 .163035 .029
.010 .221061 .226032 .022
.015 .290.119 .289187 .004
.020 .350377 .352438 .006
.025 .422540 .415785 .016

Mae .005 .201890 .206438 .023
.010 .230817 .232322 .007
.015 .25532.1 .258300 .012
.020 .286294 .284038 .008

1.025 .314168 .310087 .013

Table 3.4: Application of the Model to 31 Processes in a Fully-connected
Topology

Using the probabilities associated with each scenario, we obtain:

K-i_1 1 N-K
(0.1179702) + -(0.1104702) + A'--T-(0.2279702) = 0.206-1379

Simulation results show 0.201890. for a relative error of 2.3(.
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For N = 21 and K = 5, our computation becomes:

Q,, = 12.658563 - 13

Qcip = 0.09404

Our times between successive executions of the critical section for the three

scenarios become:

K-i K+I
K 1 tP + tMs 9 + Qc1PtP + tp = 2 tp + tin, 9 + Qciptp = 0.1154702

tmsg + 2tp + Qciptp = 0.1104702

K-- tp + 2tmsg + 3tp + Qciptp = 2 +tp + 2tmsg + Qcptp = 0.225470222
Using the probabilities associated with each scenario, we obtain:

(0.1154702) + (0.1104702) + N (0.2279702) = 0.2009464N N N

Simulation results show 0.189798 time units, for a relative error of 5.9%,.

We can conclude that our model also yields excellent results for the

Maekawa algorithm in a fully-connected topology. Table 3.3 and Table 3.4

summarize our findings, for 31 and 21 processes, for all three algorithms in a

fully-connected topology.

Our results lose their accuracy as contention for the critical section

decreases, until it is unusable for systems with light contention. Our model

is not accurate for periods of light contention, because we cannot predict the

length of time between critical section executions; i.e., the system is not in

steady state. In the RA algorithm, for example, if no process is waiting for

the critical section, the length of the chain of messages between executions of

the critical section becomes two: a process sends a request message to all other

processes and receives a reply message from each of them. In addition, we can
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expect intervals when no process seeks access to the critical section. Without

a reasonable guess for these values, we cannot model the delay between critical

section executions using the methodology we have just illustrated.

3.5.2 Ring Topology

Figure 3.9: A Network with a Ring Topology

Figure 3.9 shows a ring topology. There is a single, uni-directional

path through each vertex in the network. Each vertex has a single incoming
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edge and a single outgoing edge. Messages can be passed in only one direction

and must be relayed when a message is addressed to a process more than one

hop away from the sending process.

We assume that the system has multicasting capability, where a single

message can be addressed to all or a subset of other processes. Hence, a process

using the RA algorithm can send a single request message through the ring to

notify all system processes of its intention to enter the critical section. Likewise,

a process can send a single reply message when it exits the critical section. We

are now ready to derive our analytical results.

When a process in the RA algorithm exits the critical section, it sends

a reply message onto the ring. We can expect the reply message to travel, on

the average, half-way around the ring before it reaches the process which is

next to enter the critical section. If message processing time is negligible, then

the time between each execution of the critical section is 2-t S9 for systems

with an even number of processes and N- tmg for those with an odd number

of processes.

When a process in the BS algorithm exits the critical section, it sends

a release message to the controller. The controller then sends a grant mes-

sage to the next process with priority to enter the critical section. When this

process subsequently exits the critical section, it will send a message releasing

the critical section back to the controller. We can observe that exactly one

trip around the ring is required for each execution of the critical section. If

message processing time is negligible, then the time between each execution of

the critical section is Ntma.

We can again see that the length of the chain of the messages between

each execution of the critical section is the determining factor in the efficiency
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of these two algorithms. We now use these results to estimate the performance

of the Maekawa algorithm.

With our assumptions, the Maekawa algorithm approximates the be-

havior of the RA algorithm 8 of the time; it approximates the behavior of the

BS algorithm N of the time. This rough analysis gives us an estimated time

between successive executions of the critical section for the Maekawa algorithm

of:
K.N .N-Kh 2-
K-( N t/,) + (Ntmg) = t,,g + (N - K)tms = 2N- KV T N 2

where N is even, and

K N-1 N-K KN-K 2 2 N-K( N- mg) + N (Ntm.g) 2N t,g + (N - K)tmg =2N2 NK-KSV2N2Nt2 2g

where N is odd.

We again find the Maekawa algorithm performing somewhere inbe-

tween the RA and BS algorithms, although its behavior is dominated by the

less efficient centralized portion of the algorithm.

In a ring with 31 processes, we can expect the RA, BS, and Mackawa

algorithms to be ranked as follows:

1. RA - 15tmg

2. Mackawa - 27.9tmsg

3. BS - 31tm89

In a ring with 21 processes, we can expect a similar ranking:

1. RA - lOtms

2. Alaekawa - 18.4tmag
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3. BS - 21tmg

We are now ready to add message processing time and contention to our anal-

ysis.

For the RA algorithm, a message will travel about half-way around the

ring between critical section executions. For a 31-process ring, we can expect

15 hops between each execution of the critical section. Since each message is

removed from an incoming communications path and placed onto an outgoing

communications path at each hop, a message traveling 15 hops will be handled

30 times: once at the outgoing process, 28 times by the intervening CIPs and

once at the destination process. This gives us an interval between critical

section executions of 15tmsg + 30t/. With t,, = 1.0, tmsg = 0.1 and tp = 0.005,

we obtain Scs = tcs + 15tmsg + 30p = 2.65 time units. We now compute

Qc, = 27.226418 - 28

This leaves only 3 processes to send requests onto the ring when the system

reaches steady state. The time around the ring (a message travels N - I hops

before being removed from the ring) is (N - 1)tmsg + 2(N - 1)tp = 3.3 time

units. With rn = 3 and Sp ath = 3.3, we can compute

Qpath = 1.029606

But this is the contention for the entire ring. If we disperse this queue length

equally across all 30 processes, then the contention in the ring is nominal; for

our purposes, this value is negligible and can be ignored. We can use our initial

estimate of 15t g + 30tp = 1.65 as our result for the performance of the RA

algorithm. We will find this same observation holds for all of our estimates for

the ring topology. Table 3.5 and Table 3.6 catalog our results; they reveal that
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our estimates for the performance of the RA algorithm on a ring topology are

well within 10% for all cases.

For the BS algorithm, there are N hops between each execution of

the critical section. Since each message is handled by the CIP twice, the result

is Ntmg + 2NtP. For 31 processes, t,.og = 0.1 and tp = 0.005, our computation

is 3.41. With t,, = 1.0, we let S,, = t,, + 3.41 = 4.41. We now compute

Q,, = 28.732424 :z- 29

Again, contention on the ring is negligible. Therefore, we use our initial esti-

mate of 3.41 time units as our result. But we again have the case where the

process co-located with the controller will exchange messages with the con-

troller in negligible time. We will employ the heuristic where our result is

reduced by 1 for a rn-process system. For example, our result for tp = 0.005

and N = 31 is 3.41. Reducing this value by - gives us 3.3 time units. Actual

simulation results show 3.29925S time units, for a relative error of 0.0'7. Table

3.4 and Table 3.5 show that our est imates for the BS algorit In are coinsistent ly

within 1.0'7 of the actual values.

For the Afackawa algorithm, the processes are not arranged in ally spe-

cial order around the ring in an attempt to optimize performance: the proc'ses

are still numbered from 1 to N in clockwise fashion. Because of this simple

numbering scheme, we might expect that using the results that we derived for

the RA and BS algorithms as the basis of our estimate will cause a distortion

in our results - after all, some of the sets of size K within the Alackau-a algo-

rithm are contiguous on the ring, while others are spread throughout the ring.

However, our results are pleasantly accurate.

For 31 processes, we compute mean time around the ring as 27.9 hops.

Since each message is handled twice at each CIP (once to remove it from the
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Algorithm tP Simulation Results Analytical Results Relative Error
BS .005 2.195716 2.2 .002

.010 2.386511 2.4 .006

.015 2.604817 2.6 .002

.020 2.785099 2.8 .005

.025 2.995982 3.0 .001
RA .005 1.048771 1.1 .049

.010 1.145060 1.2 .048
.015 1.227219 1.3 .059
.020 1.319470 1.4 .061
.025 1.409020 1.5 .065

Mae .005 1.912121 2.024 .059
.010 2.111645 2.208 .046
.015 2.292978 2.392 .043
.020 2.634786 2.576 .022
.025 2.775042 2.760 .005

Table 3.5: Application of the Model to 21 Processes in a Ring Topology

Algorithm ji Simulation Results Analytical Results Relative Error
BS .005 3.299258 3.3 .000

.010 3.597543 3.6 .001

.015 3.886130 3.9 .004

.020 4.200229 4.2 .000

.025 4.500290 4.5 .000
RA .005 1.524705 1.65 .082

.010 1.706341 1.80 .055

.015 1.887260 1.95 .033

.020 1.927918 2.10 .089

.025 2.125856 2.25 .058
Mae .005 2.925223 3.069 .049

.010 3.326011 3.348 .007

.015 3.593556 3.627 .009

.020 3.897614 3.906 .002

.025 4.158292 4.185 .006

Table 3.6: Application of the Model to 31 Processes in a Ring Topology

communications path and once to place it onto the outgoing communications

path), we obtain 27.9tmg + 55.8tp time units as the mean time around the ring.

With t,,g = 0.1 and tp = 0.005, our result is 3.069. Letting t,, = 1.0, we set

S,, = 4.069. We now compute:

Q, = 28.542397 - 29
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Again, contention on the ring is negligible, and our result of 3.069 will serve

as our estimate. Table 3.5 and Table 3.6 reveal that our estimates for the

performance of the Maekawa algorithm on a ring topology are within 6.0%

of the simulation values. The accuracy of our results is somewhat surprising,

given that we derived them using the RA algorithm as a basis for the distributed

portion of the algorithm.

3.5.3 Star Topology

Figure 3.10 shows a network with a star topology. There is a single

full-duplex channel between the hub and each process in the network. Each

process sends its messages to the hub; the hub then relays the message to the

appropriate process. We assume that the system has multicasting capability,

where a single message can be addressed to all or a subset of other processes.

Hence, a process using the RA algorithm can send a single request message to

the hub, and the hub will relay the message to the appropriate set of processes.

Likewise, a process can send a single release message when it exits the critical

section. We are now ready to derive our analytical results.

When a process in the BS algorithm exits the critical section, it sends

a release message to the hub. The hub process is the controller, and it sends

a grant message to the next process with priority to enter the critical section.

For each execution of the critical section, the length of the chain of messages is

two, and each message in the chain requires t,g time to reach its destination.

If message processing time is negligible, then the time between each execution

of the critical section is 2 tmsg.

When a process in the RA algorithm exits the critical section, it sends

a reply message to the hub. The hub then relays the message to all processes
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waiting for a reply from this process. For each execution of the critical section,

the length of the chain of messages is one; however, each message in the chain

requires 2tmg to reach its destination. If message processing time is negligible,

then the time between each execution of the critical section is identical to that

of the BS algorithm.

CIP

CIP: communications interface processor C IP

Figure 3.10: A Network with a Star Topology

For the Makaua algorithm, each process is a controller. This char-

acteristic of the algorithm prevents us from using the hub as a controller as
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in the BS algorithm. Rather, each controller process must send its messages

across the hub. Therefore, when the behavior of the Maekawa algorithm mimics

the centralized algorithm, each message requires 2 tmg to reach its destination.

Since the length of the chain of messages is two in the centralized portion of

the algorithm, the time between each execution of the critical section is 4 tmsg.

When the Maekawa algorithm behaves in a distributed manner, it takes time

equal to 2tmsg between each execution of the critical section. Using our prob-

ability analysis for the Maekawa algorithm, we can predict the time between

each execution of the critical section to be:

K N-I 4N - 2K
7(2tmsg) + N (4tm.g) = N tmsg

On a star topology with 31 processes and negligible message process-

ing time, we can expect the BS, RA and Maekawa algorithms to be ranked as

follows:

1. RA and BS - 2tmg

2. A'ackawa - 3.61tmg

On a star topology with 21 processes, we can expect a similar ranking:

1. RA and BS - 2tmag

2. Maekawa - 3.52tmg

We are now ready to explore performance with the addition of message pro-

cessing time and contention at the hub.

For the BS algorithm, our results will be identical for the fully con-

nected topology with one exception. Since the controller resides at the hub,
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there is no process co-located with the controller. For m = 31, tp = 0.005 and

tmsg = 0.1, we set S,. = 1.22 and Spath = 0.11. We now derive the following

results.

Q,, = 22.803282 ; 23

QcIP = 0.094040

The time between successive executions of the critical section is:

2tmsg + 4tp + Qclptp = 0.220470

Simulation results show 0.218660 time units, for a relative error of 0.8%.

For m = 21, our computation becomes:

Q,, = 12.803960 23

QciP = 0.094040

The time between successive executions of the critical section is:

2tmag + 4tP + Qc1ptp = 0.220470

Simulation results show 0.218492 time units, for a relative error of 0.9%. The

model continues to give good results on the star topology for the BS algorithm.

However, when considering the RA and Maekawa algorithms, the complexity

of the analysis greatly increases because of contention at the hub.

We can begin with the identical analysis that we used to determine

the performance of the RA algorithm on a fully-connected topology. Our initial

estimate of the time between critical section executions is 2tmsg + 3tp + -Ltp.

Now the challenge becomes to estimate contention at the hub. Since the hub

can only process messages sequentially, a message will not be sent until the

previous message has been fully transmitted. If the previous message is a
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request message, there may be up to n - 1 messages that must be transmitted

until the subsequent message can be sent. A heuristic that we will use is the

following. If a message arrives at the hub and "sees" half of a message in

front of it in the queue according to our M/M/1/oo/m formula, then we will

assume that half of the m outgoing messages must still be transmitted before

the subsequent message can be sent. For example, if we assume that contention

at the hub can be estimated using Spath = 0.11, then Qcip = 0.094040 for 8

processes. We will then assume that about one tenth of the m - 1 outgoing

messages must still be transmitted before the subsequent message can be sent.

In a fully-connected network and ring topology, we ignored the fact that for

every request message sent, every process that is not waiting in the mutual

exclusion queue will respond with a reply message. If n processes are available

to send request messages into the system, then for each message sent there are

n - 1 reply messages sent also. If there are m processes in the system and Qc,

is the length of the mutual exclusion queue, then n = m - Q,,. Our measure

for contention now becomes:

QcIp = QCzlpt + Qclp(rn - Qcq - 1)tP

Since QciP is defined recursively, it suggests the use of an iterative derivation.

We can make an initial guess for Qc'ip and then iterate until the time hetween

successive executions of the critical section converges to within some E.

We encountered one problem using the iterative method. Since our

M/M/1/oo/m formula uses only integers, some of our estimates did not con-

verge. To get convergence, we interpolated the mean queue lengths of the

truncated value and next higher integer. The following equations illustrate

the heuristic. Let Q be the function that, returns the queue length from our

M/M/l/oc,/m formula and let in be a real number.
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a := trunc (m)

b a + 1

q1 := Q (a)

q2 :- Q (b)

interpolate m - float (a)

q := interpolate * ( abs (q2 - q1) ) + qI

Using these heuristics, we now derive our results letting E = 0.001.

To see the power o' the iterative heuristic, we will let m 31 and tp = 0.005.

The following table shows the sequence of computations.

Algorithm time between CS executions m - Q., QcIP
RA 0.220000 8.196718 .077500

0.297500 7.707129 .156270
0.307935 7.645636 .115672
0.299002 7.698215 .108401
0.297318 7.708208 .107168
0.297030 1

Simulation results show 0.285454 time units, for a relative error of

4.1%.

The Mackawa algorithm also requires the use of an iterative method

to obtain reasonable estimates of its performance. Our equation to compute

the interval between critical section executions is the same one that we have

seen earlier for a fully-connected environment:

Our formula to compute QcIP must also include the notion that the Maekawa

algorithm sends K - 1 failed and locked messages across the hub for every

request message. For QciP we now have:

QciP = frI(Qcp(Klt,)) + k(Qclp(2fp)) + (Qc,;(2.]t))
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We again use the heuristic of interpolation to ensure that our results converge.

With m = 31, tp = 0.005 and E = 0.001, we have the following sequence of

computations.

Algorithm time between CS executions m - Q,, Qcip
MAE 0.397475 7.155766 .015025

0.412500 7.079769 .090310
0.412804

Simulation results show 0.403856 time units between each execution

of the critical section, for a relative error of 2.2%.

Table 3.7 and Table 3.8 show the results for the star topology without

broadcast capability. For the RA algorithm, all of our results derived analyt-

ically are very close when tp is small, gr- ' .ially increasing to just under 25W%

when tp reaches a maximum. For the Maekaua algorithm, all of our results are

within 12% of the actual values.

Algorithm ip Simulation Results Analytical Results Relative Error
BS .005 .218492 .220470 .009

.010 .239714 .241032 .005

.015 .26155,) .261457 .000

.020 .279686 .282102 .009

.025 .298896 .302829 .044
RA .005 .251856 .266084 .056

.010 .329886 .339806 .030

.015 .439550 .421403 .041

.020 .575410 .512504 .109

.025 .720480 .611457 .151
Ma( .005 .393280 .398744 .014

.010 .443247 .447277 .009

.015 .505781 .494301 .023

.020 .567644 .543798 .042
1 .025 .638844 .594291 .070

Table 3.7: Application of the Model to 21 Processes in a Star Topology
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Algorithm t Simulation Results Analytical Results Relative Error
BS .005 .218660 .220470 .008

.010 .239882 .241032 .005

.015 .261687 .261457 .001

.020 .278428 .282102 .013

.025 .299407 .302829 .038
RA .005 .285454 .297030 .040

.010 .416801 .405176 .028

.015 .597982 .525157 .122

.020 .816122 .657547 .194
.025 1.059925 .802100 .243

Mae .005 .403856 .412804 .022
.010 .465786 .464555 .003
.015 .539534 .518356 .039
.020 .634396 .573600 .096
.025 .714092 .630713 .117

Table 3.8: Application of the Model to 31 Processes in a Star Topology

A reasonable question to ask is whether or not broadcast capability

will enhance the efficiency of the RA and Ilaekawa algorithms to the extent

that they may be competitive with the BS algorithm on a star topology. We

can expect the BS algorithm to perform at the same level of efficiency whether

it runs in an environment with broadcast capability or without it. However.

we can expect improvement in the performance of the RA and Maeau'a algo-

rithrrs. The contention for the RA algorithm in an environment with broadcast

capability was computed using the following equation.

QcIp = Qclp(2tp + 2(m - Q,, - 1)tp)

The iterative method was then employed as shown previously. For the lackawa

algorithm, contention was computed using the following equation.

Qcip = Qcip(6tp)

The equation is again compensated for the extra fail(d and locked messages

sent across the hub.
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Algorithm tp Simulation Results Analytical Results Relative Error
RA .005 .222334 .228840 .029

.010 .252592 .260742 .032

.015 .286326 .295784 .033

.020 .333558 .334160 .002

.025 .374652 .375494 .002
Mae .005 .370148 .399854 .080

.010 .419412 .438639 .046

.015 .463123 .477647 .031

.020 .510497 .516877 .012
1 .025 1 .565150 .556322 .016

Table 3.9: Application of the Model to 21 Processes in a Star Topology with

Broadcast

Algorithm ip Simulation Results Analytical Results Relative Error
RA .005 .221674 .228842 .032

.010 .252690 .260742 .032

.015 .285195 .295784 .037

.020 .319373 .334160 .046

.025 .362986 .375494 .034
Mae .005 .392837 .399854 .018

.010 .441730 .438639 .007

.015 .49406v .477647 .033

.020 .553554 .516877 .066

.025 .592609 .556322 .060

Table 3.10: Application of the Model to 31 Processes in a Star Topology

with Broadcast

Table 3.9 and Table 3.10 show the results for the star topology with

broadcast capability. Results obtained for the broadcast environment are closer

to the actual simulation values than the results shown for an environment

without broadcast, indicating our approximations underestimate message con-

tention in the network.

One interesting result of the simulations of the RA algorithm on a star

topology is that the RA algorithm performed more efficiently with 31 processes

than with 21 processes in a broadcast environment. This result seems to imply

that the star topology does not become saturated until beyond 21 processes;

that is. the star topology with 21 processes is not utilizing the critical sect ion to
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its fullest potential. Our iterative method of estimating performance predicts

that the RA algorithm performs with equal efficiency on both systems. This

same observation did not hold for the Maekawa algorithm; our iterative method

predicted, and simulation confirmed, that the Maekawa algorithm would be

more efficient on a star topology with 21 processes than one with 31 processes.

In any case, broadcast capability did not enhance the performance of either

the RA or Afaekawa algorithm sufficiently to make them more efficient than

the BS algorithm. Although the performance of the RA algorithm is almost

comparable to the performance of the BS algorithm in a broadcast environment,

its performance degrades as message processing time increases.

3.6 Application of the Model to a Recently Published

Algorithm

The usefulness of this model depends on whether or not it can provide

insight into the performance of newly-conceived mutual exclusion algorithms.

In February of this year, a tree-based algorithm for distributed mutual exclu-

sion was published [Raym]. The algorithm employs a logical topology that

corresponds to a tree. A privilege is passed from process to process. The pro-

cess that holds the privilege can either enter the critical section or pass it to

a neighbor process. Each root process of a subtree maintains a FIFO priority

queue. When the root process receives the privilege, it enters the critical sec-

tion if its own request is at the head of the queue; or alternately, it sends the

privilege to the process whose request resides at the head of the queue. The

author claims that the algorithm works best on a radiating star topology. To

allow a comparison between this algorithm and those looked at in this disserta-

tion, we have added a fifth subtree to the published network as shown in Figure

3.11: t his gives the distributed system 21 processes. We will now examine how
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this new algorithm performs when overlayed on a fully-connected topology.

Figure 3.11: A Network with a Radiating Star Topology

The paper claims that there is no simple formula for the average

distance between nodes. However, once we understand the algorithm and apply

our understanding of the relationship between controller nodes and leaf nodes.

a simple formula is available to estimate the performance of the algorithm.

Our first assumption is always that every process equally seeks access

to the critical section. In order for some process at the root of a subtree (this

process is a controller) to obtain the privilege for its subtree, it must make a

request to the central node. The central node then passes the request on to

the subtree that holds the privilege. When the subtree currently holding the

privilege releases it, it is passed back to the central node for relay. Since every

process seeks access to the critical section equally, the privilege could have been

released by any node in the system with the exception of the subtree that has

requested it. Since every subtree has 4 nodes, the token must be received from

one of the other 17 nodes. Of these. 12 are leaf nodes 3 hops away; .1 are root



78

processes 2 hops away; and 1 is the central node 1 hop away. This observation

gives rise to an average distance that the privilege must travel before arriving

at the root process of a subtree.

12 4 1-- (3 tmsg) + j-(2tm, 9 ) + -(tm.-a) = 2.647tm, 9

Once the privilege is received by the controller of the subtree, there are two

scenarios: the controller can accept the privilege and enter the critical section,

or it can pass the privilege to one of its 3 leaves. This leads to the follow-

ing observed average distance that the privilege will travel once it enters the

subtree:

(.25)0tmsg + (.75)tmg = .75tmsg

When the privilege arrives in the subtree, it will have traveled, on the average,

2.647tmsg + .75tmag = 3.397tmg time units until it is finally accepted by some

process.

This algorithm then exhibits the characteristic that each process in

the subtree eventually receives the privilege to enter the critical section before

the privilege is passed back to the central node. The reason behind this prop-

erty is that the privilege requires a substantial amount of time to migrate to the

subtree. In fact, when the privilege is passed to the subtree, the central node

will most likely pass a request for its return when it sends the privilege to the

root process. This protocol prevents processes in the subtree from reusing the

privilege more than once before the privilege is returned to the central node.

If a leaf node first uses the privilege, then there are two possible se-

quences that can take place: the privilege can circulate to tile other 3 processes

in time tmg + t m g + 2 1mag or in time 2 t,,g + 2 tmsg + t msq. This gives an average

circulation time of 1.5t,, time units when the privilege begins at a haf node.
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If the root process first uses the privilege, then the privilege circulates to the

other 3 processes in time ts, + 2 tmsg + 2 tmg. Since there are 3 leaf nodes and a

single root node, we can expect the mean time required for the privilege to cir-

culate through the subtree to be equal to .75(.5(Qtmg) + .5(,tmsg)) + .25(Ltmsg)

which equals 1.125tmg + .4167tmsg = 1.541 7 tmsg.

We now observe that 4 nodes make up the subtree. One node will

receive the privilege in a mean time of 3 .39 7t,,, time. The other 3 will receive

the privilege in a mean time of 1.541 7tmg time. We now have:

.25(3.397) + .75(1.5417) = 2.005525tms

There will be 2.005525tm 2 between each execution of the critical section. Sim-

ulation results show 2.OOS6Stmsg. When tis = 0.1, the relative error is 0.27.

When tp is significant., we find that the mean message processing time

is always 4.01105tp. This constant mean message processing time is perhaps

the strength of the algorithm - regardless of the number of processes in the

system, the mean message processing time remains constant when the system

is in steady-state. This observation leads to the results shown in Table 3.11.

Algorithm f.i Simulation Results Analytical Results Relative Error
Raymond .000 .200868 .200553 .002

.005 .223877 .220055 .017

.010 .249109 .240111 .036

.015 .266022 .260166 .022

.020 .287356 .280221 .025
- .025 .305844 .300276 .018

Table 3.11: Application of the Model to 21 Processes in a Radiating Star
Topology



Chapter 4

Simulation Results for Fail-free Systems

In general, we find that fully distributed algorithms perform best in all

systems with broadcast capability. Message processing time has little impact

on their performance. The Schneider algorithm performs with comparable effi-

ciency when message processing time is below 0.010. Its performance degrades

as message processing time and the number of processes in the system increase.

Broadcast capability makes negligible improvement in the performance of the

BS and Maekawa algorithms, regardless of number of processes. It is interest-

ing to note, however, the slight advantage in efficiency the Maekawa algorithm

holds in a broadcast system with 7 processes when message processing time is

small.

Without broadcast, the performance of the Schneider algorithm de-

grades rapidly as message processing time increases past 0.005. In general, the

fully distributed algorithms perform best during periods of heavy contention

when message processing time is at or below 0.015. During periods of moderate

contention, the fully distributed algorithms perform best across the spectrum

of message processing time. Finally, during periods of light contention, there

is little to distinguish the performance of the five algorithms. We note that it

is only in large systems with large message processing times where the BS and

Maekawa alg' Chms perform appreciably better than their fully distributed

counterparts.

80
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4.1 The Simulation System

POSSUM is the simulation system chosen for the implementation

of the algorithms studied in this dissertation [Bru]. POSSUM is a process-

oriented simulation system built on Modula-2 and lends itself to the simulation

of distributed systems. The events of our simulations are the messages sent and

received by system processes. Upon receipt of a message, a process executes a

sequence of instructions peculiar to the type of message received. The process

then suspends execution until the next message arrives. This message-passing

paradigm is discussed extensively in [BCM, Mis86].

Our simulation results are for a fully-connected network. It is imper-

ative that the reader be familiar with the model of the underlying system as

outlined in Chapter 2 before attempting to understand the significance of the

simulation parameters introduced in the following discussion.

4.2 Simulation Parameters Common to all Fail-free En-
vironments

Every fail-free simulation has six parameters associated with it:

1. ios - the interval spent in the critical section: the time from when a

process enters the critical section until the time it exits the critical section

2. t,,, - the interval spent in the noncritica' section: the time from when

a process begins execution until it submits a request to enter the critical

section; or the time from when a process exits the critical section until it

submits a request to reente, .he critical section

3. tmsg - message transit time: the interval it takes a message to transit a

communications path between two adjacent processes in the network
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4. tP - message processing time: the time from when a message is removed

from its communications path and its address examined by a CIP, until

it is either handed off to its parent applications process or it is ready to

be sent onto another communications path; or conversely, the time from

when a message address is examined and the message is subsequently

placed onto its outgoing communications path, until the message departs

the CIP

5. N - number of processes: the number of active processes in the system

6. broadcast - broadcast capability: in a system with broadcast capability.

a CIP can send the same message simultaneously on any number of its

outgoing channels

This number of parameters is too large for an effective simulation

strategy. If we add the fact that we intend to simulate 5 algorithms, and then

allow each of the first 5 parameters to assume 5 values, we can expect 2*56 runs

to complete the simulation. Clearly, it is essential that we hold some variables

constant while studying the effects of changing other variables.

We must keep in mind the purpose of our simulations. Specifically,

our goal is to rank the efficiency of these algorithms in fail-free and fail-prone

environments. Our goal does not involve trying to find out how each algorithm

performs in all ranges of all parameters. Consequently, -ve can make some

simplifications without compromising our goal.

Our first assumption is to make time spent in the critical section

constant and then express all other parameters in terms of that constant. We

arbitrarily chose mean time spent in the critical section, tc', to be 1.0. This

assumption is reasonable if every process executes an identical critical section.
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Our second assumption is to make the message transit time between

sender and receiver a constant. This assumption requires that all processes be

equally spaced from one another. We do not compromise our ability to rank

the overhead inherent to each algorithm by selecting a constant value. Message

transit time between adjacent sender and receiver, tin., is equal to 0.1 for all

simulations.

We can explore system performance under changing loads by varying

the number of system processes, or we can explore system performance under

changing loads by varying the value for t,,.. If t,,, is fixed, then we can increase

the number of processes in the system to generate a corresponding increase in

the frequency of requests for the critical section. In a similar fashion, we

can decrease the number of processes in the system to cause a corresponding

decrease in the frequency of requests for the critical section. If the number

of processes is fixed, then decreasing t,, causes each process to request the

critical section at shorter intervals: this increases the number of requests for

the critical section. Likewise, increasing tncs causes each process to request the

critical section less frequently. We have chosen to leave tc, at a fixed value

and vary the number of processes. This allows a third assumption: time spent

in the noncritical section, tnca, has an exponential distribution with a fixed

mean value of 10.0. The exponential distribution captures the variations in

computation times among the differing processes.

These three assumptions leave two paramters whose values we will

vary over a selected range of values: N and tp. The parameter broadcast will

be either true or false.

The number of processes in the system, N, is varied to fit the number

of processes required by the Maekawa algorithm to fulfill the non-null in+,-re',-
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tion property: 7, 13, 21, and 31. These values provide two examples of systems

where the critical section is not saturated (7 and 13), and two examples of

systems where the critical section is saturated (21 and 31).

Finally, message processing time, tp, is varied as a percentage of mes-

sage transit time [LM]. It varies from 5% to 25% at 5% intervals.

There is no warm-up of the system before collecting statistical results.

End effects are minimal for a fully-connected topology. In addition, statistics

are only valid when all of them are initialized from the beginning of the simu-

lation. For example, if the average number of processes waiting is reinitialized

after a certain period of execution, processes that exit the waiting state will do

so without ever having entered it during the simulation. No execution time is

charged by the applications process to execute the statements called for by an

incoming message; therefore, t,, is never extended, regardless of the number of

messages received by the process executing the critical section. Our reasoning

to make this assumption valid requires that t,, be of sufficient duration to make

execution time for these statements negligible. Five hundred executions of the

critical section is the basis for the results of each simulation.

All algorithms are implemented in the fail-free environment as pub-

lished.

Interval Distribution Mean Value
t,, constant 1.0
t___ exponential 10.0
tM$9 constant 0.1
tp constant 0.005-0.025
N - 7,13,21,31
broadcast - True,False

Table 4.1: General Parameter Values for the Fail-free Environment
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4.3 Simulation Results

4.3.1 Without Broadcast

One of the most interesting results can be oberved in Figure 4.1.

For almost every algorithm, performance is better as message processing time

increases from 0.005 to 0.015; then performance degrades as message processing

time increases from 0.015 to 0.025. When there is very light contention, it

appears that larger message processing time makes it more likely that a process

will be waiting in the queue when the critical section is released. This results in

slightly more efficient use of the shared resource. As message processing time

continues to increase, this advantage diminishes until the time a process must

wait in the queue outweighs the advantage gained by the greater likelihood of

being in the queue when the critical section is released.

1.9B

1 .8 .

1.7. 2

1.6.

1.5.

]Sch 3
1.2. BAc 4

1.1

1.0 I I I I I
0.025 0.020 0.015 0.010 0.005

Decreasing message processing time

Number of Processes: 7 Without Broadcast

Figure 4.1: Algorithms in Fail-free Environment

Let's look at the Schneider algorithm to help better understand this

phenomenon. When message processing time is small, the message releasing the
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critical section will arrive at each process very quickly. The next process seeking

entry to the critical section is more likely not to have made its request; therefore,

when it seeks entry to the critical section, it must send a request message and

receive an acknowledgement from every other process before it can enter the

critical section. If, however, messages travel slower in the system, then it is

more likely that a request will already have been submitted and a reply either

received or in the process of being received by the time the message releasing

the critical section arrives. Hence, it will be able to enter the critical section

with little or no delay. The window where this advantage holds is very small.

Once message processing time reaches a particular limit, the longer message

transit time, which results from the increased message processing time, causes

a longer mutual exclusion queue, greater response time and lower utilization of

the resource.
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0.025 0.020 0.015 0.010 0.005

Decreasing message processing time

Number of Processes: 13 Without Broadcast

Figure 4.2: Algorithms in Fail-free Environment

Figure 4.2 shows that with moderate contention, the RA and CR al-

gorithms perform best. Message processing time still does not diminish their
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performance by creating significant contention at the CIP. The Schncidr algo-

rithm, on the other hand, suffers from the effects of contention when message

processing time reaches 0.010, and its performance rapidly degrades thereafter.

The performance of the BS algorithm is fairly constant, regardless of message

processing time. The Maekawa algorithm performs slightly better than the BS

algorithm across the spectrum of message processing time.
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Figure 4.3: Algorithms in Fail-free Environment

For 21 processes, we find that all of the algorithms, with the exception

of the Schneider algorithm, perform similarly until message processing time

decreases to 0.015. The RA and C/? algorithms perform best at lower message

processing times; even the Sch, cider algorithm is almost comparable when

message processing time is at 0.005. However, the Schlneidcr algorithm rapidly
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bogs down as message processing time becomes significant. The number of

messages to be processed and the resulting contention make the algorithm

inefficient in comparison to the others.
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Figure 4.4: Algorithms in Fail-free Environment
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We can see that with 31 processes, the BS and Maekawa algorithms

perform best as message processing time increases through 0.010. The point

where the CR and RA algorithms match and then exceed the performance of

the BS and Maekawa algorithms occurs at and below 0.010 message processing

time. The Schneider algorithm is uncompetitive at all but the lowest message

processing time; even then, it is still the least efficient algorithm.

4.3.2 With Broadcast

1.9

1B8- !I
1.7.I

2 2
1.6-

1.5-

1.4. B

1.3 .IM a e 2

Sch 3
1.2- RA 4

CR 5
1.1

1.0 I I I I I
0.025 0.020 0.015 0.010 0.005

Decreasing message processing time

Number of Processes: 7 With Broadcast

Figure 4.5: Algorithms in Fail-free Environment

With broadcast, we note in Figure 4.5 the identical phenomenon as

we did without broadcast. In a system with light contention, we can see that

increasing message processing time increases efficiency until message process-

ing time reaches about 0.015. As before, efficiency then decreases as message

processing time continues to grow. For systems with light contention, this

phenomenon seems to suggest that an artificial delay may actually improve
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utilization of the shared resource when message processing time is small.

With broadcast in a 13-process system, the Schneider algorithm per-

forms better than both the BS and Maekawa algorithms. This is in contrast

to systems without broadcast, where contention quickly degraded the perfor-

mance of the Schneider algorithm. One interesting result to note is that the RA

algorithm performs consistently better, albeit slightly, than the CR algorithm.

This phenomenon did not hold for a 13-process system without broadcast. This

inconsistency probably exists because the CR algorithm requires that a request

message follow relinquishment of an implicit authorization by a process waiting

entry to the critical section. If the request message were to be "piggy-backed"

onto the reply message, we could expect the CR algorithm to perform at least

as efficiently as the RA algorithm. However, the current algorithm calls for

the sending of a reply message followed immediately by a request message. The

consequence of this protocol is reduced efficiency.
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Figure 4.6: Algorithms in Fail-free Environment

Even with 21 processes, the RA and CR algorithms establish their su-

periority in a fail-free environment. The Aackaua algorithm performs slightly
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better than the BS algorithm across the spectrum. All of the algorithms pro-

vide performance similar to their performance in a system with 13 processes,

with the exception of the Schneider algorithm. This stability in performance

is a desirable characteristic for system designers interested in a consistent level

of efficiency by the particular algorithm selected for implementation.

BS 1
1.6 Mae 2

Sch 3
1.5 RA 4

3 CR .;
1.44

1.2. 1
4 1 1

1.1

1.0 I I I I
0.025 0.020 0.015 0.010 0.005

Decreasing message processing time -

Number of Processes: 21 With Broadcast

Figure 4.7: Algorithms in Fail-free Environment

Again, with the exception of the Schneider algorithm, we see very

stable performance in all of the algorithms in systems with 31 processes; con-

tention does not become a factor to any great degree for any of the algorithms.

The Schneider algorithm performs well when message processing time is small;

however, its performance quickly degrades as message processing time is in-

creased.

It is clear that the fully distributed implementations enjoy an advan-

tage throughout the range of message processing time in broadcast environ-

ments; this finding is in contrast to the loss of efficiency displayed in large sys-

tems with significant message processing times in systems without broadcast.

As long as contention of messages does not become a significant factor, their

shorter chains of messages give the distributed algorithms better performance.
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Figure 4.8: Algorithms in Fail-free Environment



Chapter 5

Simulation Results for Fail-prone Systems

In this chapter, we investigate the effects of process failure on the BS,

RA, CR and Schneider algorithms. Specifically, we investigate process failure

on a fully-connected topology. Our first task was to define timing intervals

necessary for conducting leader election and probes of processes suspected of

having failed. One of our more interesting results concerns the interval re-

quired to conduct a probe of a process suspected of having failed within a fully

distributed algorithm. We discover that the interval necessary to determine

whether or not a process has failed is identical for fail-prone environments with

and without broadcast. As a result, our simulations reveal that systems having

7 and 13 processes and no broadcast capability perform with efficiency com-

parable to those systems with broadcast capability. Only as the number of

processes increases to 21 do we see notable differences in efficiency between

systems with and without broadcast.

We can also observe that because the BS algorithm must only com-

pensate for failed controllers and processes which fail in the critical section, it

performs well throughout all ranges of message processing time and number

of processes in systems without broadcast. Even with broadcast, the BS al-

gorithm performs more efficiently than its fully distributed counterparts until

the number of processes in the system approaches 13. In contrast, because all

failures must be compensated for in the RA and CR algorithms, performance

93
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is impeded due to any failure. Consequently, the fully distributed implemen-

tations spend a significant portion of their time managing failure.

We find that the Schneider algorithm cannot cope with frequent fail-

ure in small systems. Eventually, the situation develops where, due to a se-

quence of rapid failures, no process retains a c0omplete message queue. The

result is that the algorithm fails and must be restarted. For larger systems,

we find the Schneider algorithm performing almost as efficiently in fail-prone

environments as in fail-free ones. The reason for this is two-fold. First, with

its detection of failure of processes that do not acknowledge messages, failed

processes are generally removed from the mutual exclusion queue before they

reach the head of the queue. The result is a throughput of processes into the

critical section that approaches a fail-free implementation. Second, since each

process sends (N - 1) messages into the system for every message, the algo-

rithm may at times transmit significantly fewer messages when processes have

failed.

5.1 Compensating for Failure in Fail-prone Systems

In the presence of failures, an algorithm written for distributed sys-

tems must detect failure, compensate for it, and continue computation. When

a failed process attempts to recover, the algorithm must provide a means for

the process to reacquire local state consistent with the state of the system.

Specifically, we study process failure. An algorithm must compensate for four

types of process failure:

1. A process fails while executing outside the critical section.

2. A process fails while waiting for the critical section.
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3. A process fails while executing within the critical section.

4. A process that plays a key role in the execution of the algorithm fails.

Failure is detected by an inquiring process sending an are you alive message

to a process that appears to have failed. If a process suspected of failure

is active, it acknowledges each are you alive message sent to it individually.

This particular protocol of responding I am alive to each individual query

has implications as to how quickly the inquiring process can assume that the

non-responding process has failed. After a pre-determined interval has expired

with no response, the inquiring process can assume that the suspect process

is down. Each type of failure requires a unique response from the algorithm.

This response varies according to whether an algorithm employs a centralized,

hybrid or fully distributed implementation.

When a recovering process attempts to rejoin the algorithm, it must

reacquire local state consistent with the execution of the algorithm. The recov-

ery protocol used depends almost completely on the state maintained by each

process. For example, within a centralized implementation, a recovering pro-

cess is concerned only with its own state; consequently, its recovery protocol

need only consist of determining which process is currently serving as con-

troller. In contrast, within an implementation where each process maintains

global state, a process must reacquire consistent global state. One method

to reacquire global state involves using a "sponsor" to run a restart protocol.

This is a difficult protocol to implement, because as soon as the sponsor process

sends its global state to the recovering process, the global state is outdated.

The published papers for our algorithms discuss process failure in

general terms. Many important details are missing. In order to run concrete
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simulations, we are forced to make assumptions about what length intervals

may take, and we must then assign values to these assumptions. What values

we assign have an impact on the results of our simulations, so they must be

justified. Whether or not certain types of messages should have priorities over

other types of messages is also an important issue. The following sections

provide insight into the thinking that went into determining the lengths of the

intervals used in our simulations; the justification for the numbers assigned to

them; and the priorities assigned to certain types of messages.

Our results are presented for a fully-connected network where only

applications processes can fail. Processes fail in a non-Byzantine manner, and

the communications network never fails. Processes fail one at a time. and all

processes are equally likely to fail. We assume that a failed process cannot

send or receive messages, nor can it execute instructions. When a process fails,

any local information pertaining to the use of the critical section is invalidated.

Furthermore, a process that fails in the critical section has not effectively uti-

lized it; consequently, the time spent in the critical section by that process is

not counted toward utilization. When a failed process recovers, it recovers into

the state NCS.

5.2 Simulation Parameters Common to all Fail-prone
Environments

Fail-prone simulations add the following five parameters:

1. thil - the mean interval between process failures

2. tdrad - the time from when a process fails, until it starts to reboot
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3. treboot - the time from when a process begins to reboot, until it is ready

to restart

4. tdeay - the interval that a process will wait, until it inquires as to whether

or not another process has failed

5. tmax - the interval that a process will wait, until it inquires as to whether

or not the process in the critical section has failed

Our simulations are being conducted for the purpose of ranking the

efficiency of our algorithms in a fail-prone environment. We are not attempting

to find "hard numbers" for a wide range of values. Rather, we wish to test the

ability of these algorithms to detect, cope with and recover from failure. This

testing is done under conditions of frequent failure and rapid recovery.

We will explore the performance of our algorithms under loads of

frequent failure. Our simulations have a mean time between exponential failures

of 5.0 time units.

Idead will have an exponential distribution and a mean value of 3.0 time

units. The exponential distribution allows for a variation in the down time of

system processes. treboot will be a constant time of 5.0 time units for every

rebooting process; our assumption is that all processes execute an identical

reboot routine. The sum of these two values equals trecove, where treco r is the

time from when a process fails, until it is ready to restart. During the interval

trecover, a process cannot send or receive messages. Since we are interested

in testing the recovery mechanisms of the various algorithms, we have chosen

values for tdead and trboot that allow consistent exercise of the recovery protocol

in the midst of consistent exercise of failure detection and compensation.
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td la is the time from when a process sends a message, until it in

quires as to whether or not a process which has not responded has failed. This

time will be derived from our fail-free simulations; we will use twice the mean

acknowledgement time of our fail-free simulations as the basis for causing a pro-

cess waiting for a response to inquire as to whether another process is down.

When the interval tdelay expires, a process will send an are you alive message

to the process it suspects has failed.

tma is similar to t dela., except that it will be used in conjunction with

receiving a response from the process currently executing the critical section.

For example, if the controller in a centralized implementation has granted the

critical section to a particular process, and a release of the critical section is

not received within Ima, time, then the controller inquires as to whether or not

the process in the critical section has failed. When the interval tma, expires,

the controller will send an are you alive message to the process it suspects has

failed.

Interval Distribution Mean Value
ICS constant 1.0
tc exponential 10.0
tMS, constant 0.1
t ,  constant 0.005-0.025
N - 7,13,21,31
broadcast - True,False
tfail exponential 5.0
tdead exponential 3.0
treboot constant 5.0
t
iel constant 2*(fail-free mean time)
t-a, I - 2*(fail-free mean time)+tc,

Table 5.1: General Parameter Values for the Fail-prone Environment

All algorithms are implemented as published. Exceptions are explictly

noted. Familiarity with the various algorithms is assumed in the following

discussion.
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5.3 BS Algorithm

The BS algorithm is the first published algorithm to give a viable

election procedure and recovery mechanism for a centralized implementation of

mutual exclusion. Specifically, the BS algorithm shows that election of a new

controller in a fault-tolerant centralized implementation of mutual exclusion

is a solvable problem. We implement the BS algorithm as published with

one exception - the election algorithm used is the one developed by Chang

[CG]. We have modified the Chang election algorithm as follows. If a process

in the critical section is notified of an election, it immediately declares itself

the winner of the election. This modification is consistent with the suggested

election algorithm in [BSS4].

5.3.1 Simulation Parameters Unique to BS

The BS algorithm adds the following three parameters to a fail-prone

environment:

* t c-probe - the time from when the controller sends a message to the

process executing in the critical section, until the controller can determine

whether or not that process has failed

" tprobe - the time from when a process, p, sends a message to the con-

troller, until p can determine whether or not the controller has failed

" teet - the time it takes to elect a new controller after it is first discovered

that the controller has failed

t'-prob, is a minimum interval based on the assumption that priority

messages can be sent into the network to determine if a process has failed. Since
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our network is fully-connected, we can use the time to exchange a message

between adjacent neighbors with no contention at the CIP as our value for

to-probe :

t'-probe tp + t,,sg + tp + tp + tins9 + tp

= 2t,,,g + 4tp

Upon expiration of this interval, the controller is able to determine whether or

not the process in the critical section has failed. We can also note that an are

you alive message involves only two processes in the system: the inquiring pro-

cess and its non-responding counterpart. The message exchange is transparent

to the rest of the system.

The derivation of tprobe and tect are discussed in Section 5.3.3.

Interval Broadcast Distribution Mean Value
t-probe No constant 4 tp + 2

1ms

Yes constant 4 p + 2 tms
trobe No constant 2Ntp + 2tmsg

Yes constant 2Ntp + 2 tmsg
telect No constant (3N - 2)tp + 2tm

Yes constant (N + 2) t p + 2tm, g

Table 5.2: Parameter Values for the Fail-prone Environment of BS

5.3.2 Message Priorities

When a process inquires whether or not the controller has failed,

it sends a probe message to the controller. If a response is not received by

tprobe, then the process knows that the controller has failed. The converse also

holds; when the controller inquires whether or not the process executing the

critical section has failed, the controller sends a c-probe message to the suspect

process. If a response is not received by tc-probe, then the controller knows that
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the process has failed. Since we have set t c-probe to be a minimum interval,

c-probe messages must be of the highest priority. We note that probe messages

can be assigned a lower priority than the c-probe message with no impact on

the interval tprobe. The process in the critical section will not poll the controller

while in the critical section and neither will it send a probe message to the

controller until at least tma, time units after it exits the critical section; the

implication is that our interval t probe is large enough to compensate for the

presence of a c-probe message.

When it is discovered that the controller has failed, electing a new

controller must take priority over all other activity in the system. Since we

want to elect the controller in minimum time, votes for the new controller,

denoted as election messages, must be of the highest priority.

We must now resolve the conflict in terms of highest priority between

probe messages and election messages. Only one type of message can be of

the highest priority. When the controller initiates a c-probe message, there will

obviously not be any election messages in the system, because the controller has

not failed. In contrast, when a process inquires whether or not the controller

has failed, it may be the case that an election has begun. The probe message is

no longer of any consequence, however, because the inquiring process will know

the controller has failed upon receipt of an election message. We also want the

election to span the shortest possible interval, so that the mutual exclusion

algorithm can restart. This leads us to choose the election message as having

highest priority, the c-probe message second highest, the probe message third

highest, all other mutual exclusion messages fourth highest, and the messages

of the underlying computation the lowest priority. We now have the following

priority ranking:
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1. election messages

2. c-probe messages

3. probe messages

4. all other mutual exclusion messages

5. messages of the underlying computation

5.3.3 Specifying Intervals

We have defined the length of all intervals in our fail-prone simulation

of the BS algorithm with the exception of tc-probe and telect. As previously

mentioned, election messages have precedence over all other messages. This

implies that the election takes place in minimum time. We must assume that

every process might participate in the election of a new controller, including the

failed controller that has just rejoined the algorithm. Given this assumption,

we can establish some upper bounds on the time it takes for every process to

send its vote to every other process. All of the following results hold for a

fully-connected distributed system with N processes.

Theorem 5.1: An interval of sufficient length for leader election

in a distributed system without broadcast, where t,s, is the longest message

transmission time between any two adjacent processes, is at most

4(N - 1)tp + 2tmsg

where tp > 0.

Proof: Each process votes exactly once per election by sending a

single election message to every other process in the network. It will take a
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process (N - 1)tp time to send N - 1 messages. Each message requires at most

tms9 time to transit the network from sending to receiving process. Since each

process votes only once in an election, there can never be more than N - 1

election messages received at any process. If a process receives an election

message from every other process prior to sending its own vote, it will take

(N- 1)tp time to process those messages. Upon processing the last vote, it will

send its own N - 1 election messages in time (N - 1)tp. Again, each message

transits the network in at most tmsg time. Finally, there can never be more than

N - 2 messages already in any message queue when the last message arrives.

Therefore, no more than time (N - 1)tP can pass to complete the election. We

now have the following figures:

1. (N - 1)tp is required for a process to vote.

2. tins9 time is required to send the election messages to the farthest process.

3. At most (N - 1)tp time units can pass before all incoming votes are

processed and the last process to receive its votes participates in the

election.

4. The last process votes in (N - 1)tp time.

5. tins9 time is required to send the messages to the farthest receiving pro-

cess.

6. At most (N - 1)tp time can pass to conclude the election after the last

message arrives at its destination.

The resulting time is the sum of the individual times for these 6 events:
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(N - 1)tp + tng + (N - 1)tp + (N - 1)tp + tng + (N - 1)tp

= 4(N - 1)tp + 2 tmg. 0

Because t ... and tp are constants in our simulations, we can derive a

tighter bound for the time it takes to hold an election. We prove two lemmas

to help us establish the bound. Our proofs assume a fully-connected network

with N processes.

Lemma 5.1: If tins > 0 and tp = 0, then the time it takes to hold

an election is at most 2 tmSg.

Proof: If m processes discover simultaneously that the controller

has failed, then m messages are simultaneously sent to each of the remaining

N - m processes in the network, and m - 1 messages are sent to each of the

m processes. Since tp = 0, the messages will be transmitted and processed in

time equal to tin. At this time, all remaining N - n processes are aware of

the election and N - m messages are sent to each of the original n processes in

the network, and (N- m- 1) messages are sent to each of the remaining N- rn

processes. But again, tp = 0, so we can expect the messages to be transmitted

and processed in time equal to t,,,. The resulting time is ting + tmsg = 2 tmsg.

0

Lemma 5.1 has a corollary that we will use in our later proofs.

Corollary 5.1: If tmsg > 0 and tp = 0, then the time it takes for

a process to send a message to one or more other processes and receive an

acknowledgement from at least one other process is at most 2t,,,.

Lemma 5.2: If tin, 9 = 0 and tp > 0, then the time it takes to hold

an election in a distributed system without broadcast is at most (3N - 2)tp.
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Proof: If m processes discover simultaneously that the controller has

failed, then m messages are simultaneously sent to each of the remaining N - rn

processes in the network, and m - 1 messages are sent to each of the original

m processes. Since tmg = 0, each message arrives at its destination instan-

taneously. However, since tp > 0, each group of m messages arrives at its

destination precisely tp apart. By definition of our underlying distributed sys-

tem, each message is sent into the network from lowest numbered destination

address to highest. Without loss of generality, assume that the highest num-

bered process is not one of the original m processes. After (N - 1)tp time has

passed, m messages will arrive at the highest numbered process. After at least

mtP has passed (additional messages may have arrived), the highest numbered

process will participate in the election by sending its own N - 1 messages in

time equal to (N-1)tp. After sending its vote, either (1) N- I messages arrived

before this process sent its vote, in which case the last message sent will arrive

at its destination to an empty queue, and it will be processed in time equal to

tp; or (2) this process will have to process up to an additional (N - r - 1)

messages after sending its own election messages. In case (2), the resulting

time is 3(N - 1)tp. In case (1), the resulting time is 2(N - 1)tp + (rn + 1)1P,

where m = (N - 1). Case (1) now gives us time equal to at most (3N - 2)tP.

Theorem 5.2: An interval of sufficient length for leader election in

a distributed system without broadcast, with constant t,, and tp, is at most

(3N - 2)tp + 2 tmg.

Proof: The election interval is maximized by assuming that one or

more processes must be notified to participate in an election. By Lemma 5.1,

the maximum time necessary to transmit a vote to another process and receive
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a reply in an election is 2 tmSg. In a similar fashion, the number of messages

at a destination is at a maximum if all messages arrive at their destinations

instantaneously. In this case, messages which might not otherwise contend with

one another at the same site arrive simultaneously. By Lemma 5.2, the message

processing time when messages arrive at their destinations instantaneously is

at most (3N - 2)t,. Hence, the time to hold an election where tisg and tp are

constant is at most (3N - 2)tp + 2tmsg. 0

We now prove the following lemma to establish an upper bound for

election with broadcast.

Lemma 5.3: If tisg = 0 and tp > 0, then the time it takes to hold

an election in a distributed system with broadcast is at most (N + 2)tp.

Proof: If m processes discover simultaneously that the controller has

failed, then n messages are simultaneously sent to each of the remaining N - rn

processes in the network. Since tins2 = 0, each message arrives at its destination

instantaneously. With broadcast, all messages are sent in tp time and every

remaining process receives ?n messages at the same moment. m messages are

processed in rntp time, and N - m messages are then broadcast to each of

the original m processes in the network in tp time. All messages again arrive

instantaneously. After time (N - rn)tp, the last election message is processed.

The resulting time is tp + rntp + tp + (N - m)tp = (N + 2)1p. 0

We are now ready to prove an upper bound for controller election

with broadcast.

Theorem 5.3: An interval of sufficient length for leader election in

a distributed system with broadcast, with constant t,,,,g and tp, is at most

(N + 2 )tp + 2tmsg.

Proof: Follows from Lemma 5.1 and Lemma 5.3. 0
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Lemma 5.4: If tin = 0 and tp > 0, then the time it takes for a

process in a distributed system, with or without broadcast, to send a probe

message to the controller and then receive a reply, is at most 2Ntp.

Proof: Assume that all processes in the system elect to send a probe

message to the controller. After time tp, N - 1 probe messages will arrive at

the controller. It will then take time (N - 1)tp to process those messages and

(N - 1)tp to individually acknowledge them. The last message will arrive at its

destination and be processed in time tp. The resulting time is tp + (N - 1)tp +

(N - 1)tp + tp = 2Ntp. 0

Theorem 5.4: An interval of sufficient length for probing the con-

troller in a distributed sytem, with or without broadcast and with constant

t..g and tp,. is at most 2Ntp + 2 tmsg.

Proof: Follows from Corollary 5.1 and Lemma 5.4. 03

5.3.4 Conducting an Election

When a process determines that the controller has failed, it sends

an election message to all other processes in the system. We assume that

the Chang election algorithm is used by the BS algorithm [CG]. The Chang

election algorithm requires that a process will not fail in the middle of casting

its vote; i.e., every process must receive an identical set of votes to arrive at

an identical conclusion as to which process has been elected controller. It's

important to note that only processes waiting for the critical section have an

interest in whether or not the controller has failed; a process not waiting for

the critical section is not impacted by controller failure. Since it is desirable

to limit message traffic in the network. our election need only involve those

processes waiting for the critical section. A further advantage of this heuristic
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is efficiency. If a process waiting for the critical section becomes controller,

it can grant the critical section to itself while it informs the other processes

that it has become the new controller. If a process is currently executing

the critical section, it immediately declares itself winner of the election upon

receipt of an election message. It then notifies the rest of the system that it is

the new controller. This technique also minimizes election time by completely

eliminating the need to conduct an election. If the critical section is free when

the controller fails, an election of some form must take place. Regardless of the

election algorithm chosen, the physics of the problem constrains the optimum

time in which an election can be performed. First, when a process determines

that the controller has failed, it will send an election message to every other

process in the system. Upon receipt of an election message, if a process waiting

for the critical section has not already voted, it will send its vote in an election

message to every other process in the system: otherwise, it saves the vote of

the process which sent the message.

By virtue of the Chang election algorithm every process, which was

active within t,,g of when the election began, knows what process has been

elected as the new controller no later than telect time units after the first election

message is sent. Upon expiration of telect, those processes seeking access to the

critical section send their requests to the controller; the controller reconstructs

the FIFO queue using the incoming requests. The new controller also sends

a message throughout the system declaring its new status. This message is

primarily for processes that attempt to rejoin the algorithm during an election;

these processes may not receive the entire vote (part of it may have already

been sent before they become active again), so this notification is esscntial.

It may be the case that a process attempts to rejoin the algorithm
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during an interval when the controller is dead and there are no processes waiting

for the critical section; the message seeking the identity of the controller, sent

by the restarting process to the other processes in the system, will be ignored.

After tetec time has passed, this process calls an election and notifies the rest

of the system of its vote. This protocol implies that the process rejoining

the algorithm participates in the election, even though it is not waiting for

the critical section. This participation ensures the restarting process becomes

controller if no other process participates in the election. If the critical section

is occupied, the process in the critical section declares itself the winner of the

election as previously discussed.

5.3.5 Miscellaneous Procedures

If a process fails while waiting for the critical section and then recovers

before its failure is discovered by the controller, it will send a message requesting

the identity of the controller. Upon receiving the message, the controller will

remove the previous request of the process from the mutual exclusion queue.

When the controller determines that the process executing the critical

section has failed, it generates a release message on behalf of the failed process

and either sends a grant message to the process at the head of the mutual

exclusion queue or marks the critical section as available if the queue is empty.

5.4 RA Algorithm

The published RA algorithm recommends using a sponsor process

as the means of admitting restarting processes back into the execution of the

algorithm. Once the process is readmitted, it must update its local sequence

number using one of several methods described in the paper. Only after its local
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sequence number is updated can the process request mutual exclusion. This

is a rather lazy approach to recovery. Instead, we want an aggressive recovery

protocol. We have chosen to allow a restarting process to send a message

to all other processes in the system. Those processes, which are active, will

acknowledge the restarting process. After the expiration of a predetermined

interval, the restarting process will have been added to the list of all active

processes in the system; it will have identified all active processes; and it will

have updated its local sequence number consistent with the execution of the

algorithm. Advantages of this method include a process rejoining the mutual

exclusion algorithm in minimum time and the ability of a process to be admitted

to a system where all other processes have failed.

All other aspects of the RA algorithm are implemented as published.

5.4.1 Simulation Parameters Unique to RA

Interval Broadcast Distribution Mean Value
tpobe No Constant 2Ntp + 2tmsg

Yes Constant 2Ntp + 2rinse
tresa rt No Constant (3N - 2)tp + 2tm $L-

Yes C7onstant 2Ntp + 2trnsq

Table 5.3: Parameter Values for the Fail-prone Environment of RA

The RA algorithm adds the following two parameters to a fail-prone

environment:

1. t probe - the time from when a process, p, sends a message to all pro-

cesses in its Awaiting Reply Queue, until p can determine which of these

processes have failed

2. trestart- the interval it takes a process to rejoin the mutual exclusion

algorithm after its first rcslar message is sent
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The derivation of these intervals is presented in Section 5.4.3.

5.4.2 Message Priorities

When a process inquires whether or not one or more other processes

have failed, it sends a probe message to each of those processes. Those processes

which have not responded by tprobe have failed. Since we want to discover

process failure in minimum time, probe messages must have the highest priority.

If the process at the head of the mutual exclusion queue conducts a probe, it

has authority to enter the critical section at the expiration of tprobe. This

observation indicates the importance of probe messages to the continuation of

the algorithm.

When a process reenters the system after having failed, it sends a

restart message to all other processes in the system. Those processes responding

by a certain time are active; those which have not responded when the interval

expires are down. We would like to make this interval minimal for two reasons.

First, it is possible for every process to restart in the same interval, which by

necessity makes the delay caused by observing this interval unreasonably large

in most cases. Second, the sooner a process rejoins the algorithm, the more

frequently the critical section is requested.

We will show in Section 5.4.3 that the maximum interval of a probe

is always less than or equal to the maximum interval required for a restart. We

must consider that all processes may restart in the same interval. However, any

process attempting to restart will not be sending probe messages. Therefore,

we can simply assign higher priority to probe messages without compromising

our restart interval. The intuition for this observation is that when the 771th

process in the mutual exclusion queue conducts a probe, it only sends probe
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messages to those processes ahead of it in the queue; that is, the m"h process

in the mutual exclusion queue will send m probe messages. Therefore, no more

than (N-1) messages can ever be sent into the network during any probe.thn 2

By contrast, up to (N - 1)2 restart messages can be sent if every process

attempts to restart in the same interval. Since a process conducting a probe

will not be restarting, and no process sends more probe messages than restart

messages, granting probe messages priority over restart messages will not affect

the duration of the restart. To ensure restart within some minimum time, the

restart messages must by given priority over other mutual exclusion messages.

We now have the following priority ranking:

1. probe messages

2. restart messages

3. all other mutual exclusion messages

4. messages of the underlying computation

This order of priority ensures minimum intervals for both failure detection and

process restart.

5.4.3 Specifying Intervals

Under our discussion of simulation parameters unique to the RA al-

gorithm, one can observe that trestart for the RA algorithm is equivalent to t,,,,,

for the BS algorithm in an environment without broadcast. This is no acci-

dent: every process can restart or vote in the same interval of time. We will

not prove the duration of the restart interval. Theorem 5.2 holds for both the

Chiang election protocol and the restart protocol described here in a distributed
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system without broadcast. With broadcast capability, the same message can

be broadcast on N - 1 outgoing channels in time tp. Our result for a broad-

cast capability, shown in Theorem 5.5, is therefore less than the result shown

in Theorem 5.2. However, since each restart message must be acknowledged

individually, our result is greater than that of Theorem 5.3.

Lemma 5.5: If ting = 0 and tp > 0, then the time it takes for a

process in a distributed system with broadcast to conduct a restart is at most

2Ntp.

Proof: Assume m processes restart simultaneously. rn messages are

sent to the remaining N- m processes in the network in tp time. m messages are

processed in rntp time, and replies are then sent in mtp time. The last, message

crosses the network and is processed in t. time. The result is tP+rntp+rmtP+tp =

2(m + 1)tp time units. This interval is at a maximum when m = N - 1. The

result follows. 0

Theorem 5.5: The time it takes for a process in a distributed system

with broadcast to conduct a restart, with constant tm,9 and tp, is at most

2Ntp + 2tmsg.

Proof: Follows from Corollary 5.1 and Lemma 5.5. 13

When conducting probes, we obtain a similar interval. To understand

our subsequent proofs of the intervals necessary to conduct probes of other

processes, we first provide an informal intuition of how we derived our results.

In the RA algorithm, there is an implicit mutual exclusion queue. When there

are no failures and the critical section is occupied, the process at the head of

the mutual exclusion queue is waiting for a reply from exactly one process; that

is, it is waiting for a reply from the process in the critical section. Similarly,

the second process in the mutual exclusion queue is waiting for a reply from
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exactly two processes; that is, it is waiting for a reply from the process in

the critical section and the process at the head of the queue. If every process

is waiting in the mutual exclusion queue, then the last process is waiting for

exactly N - 1 replies. If every process were to send a probe message to every

process ahead of it in the queue, exactly ( messages would be sent into
2

the network. Our proofs will rely on the observation that the Mrh process in

the queue sends exactly m probe messages to those processes ahead of it in the

queue and receives at most (N - m - 1) probe messages from those processes

behind it in the queue. By the same token, the m h process receives at most

ni acknowledgements from the processes ahead of it in the queue and sends

at most (N - m - 1) acknowledgements to those processes behind it in the

queue. The following results are presented for a fully-connected network with

N processes.

Lemma 5.6: If t,,.q = 0 and tp > 0, then the time it takes for a

process in a distributed system without broadcast to send a probe message to

every process ahead of it in the mutual exclusion queue and then receive a reply

from each of them, is at most 2Nt.

Proof: Assume that N - 1 processes are waiting in the mutual ex-

clusion queue and elect to simultaneously send probe messages. Without loss

of generality, assume that processes are ordered in the queue such that process

1 is in the critical section, process 2 is at the head of the mutual exclusion

queue, process 3 is second in the queue, and so on. Since messages are sent in

order from lowest to highest, all processes waiting in the queue will send their

first probe message to the process in the critical section. Furthermore, since

a process will only send messages to its predecessors in the queue, the m"

process will send n probe messages in time mtp. After additional tp time has
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passed, a process, in the worst case, can expect to receive (N - m - 1) probe

messages, where m is its position in the queue (m = 0 for the critical section

process). These probe messages can be processed in (N - m - 1)tp time. A

process will then respond with (N - m - 1) acknowledgements in (N - m - 1)tp

time, the last of which is processed in time tp. Finally, the mth process will

then process at most m acknowledgements to its probe messages. The resulting

time is mtp + tp + (N - m - 1)tp + (N - m- 1)tp + mtp + tp = 2Ntp. 0

Theorem 5.6: An interval of sufficient length for the successful prob-

ing, by a process in a distributed system without broadcast, of all processes

ahead of it in the mutual exclusion queue, with constant tmag and tp, is at most

2Ntp + 2 tmsg.

Proof: Follows from Corollary 5.1 and Lemma 5.6. :

Lemma 5.7: If t,,g = 0 and tp > 0, then the time it takes for

a process in a distributed system with broadcast to send a probe message to

every process ahead of it in the mutual exclusion queue and then receive a reply

from each of them, is at most 2Ntp.

Proof: Assume that all processes in the mutual exclusion queue elect

to send probe messages, and we assume the same ordering in the mutual exclu-

sion queue as in Lemma 5.6. If N - 1 probe messages are sent to the process in

the critical section, the process in the critical section can still only process them

in (N - 1)tp time units, exactly tp time units after the messages were broad-

cast. Then, since each message must be individually acknowledged, another

(N - 1)tp time units is required to acknowledge the probe messages. Finally,

the last message is sent and then acknowledged in tp time. The resulting time

is tp + (N - 1)tp + (N - 1)tp + tp= 2Ntp. 0

It does not seem appropriate that an interval for a probe using broad-



116

cast should be no less than the interval for a probe where broadcast is not used.

The intuition for this anomaly is that the concurrency available when messages

are broadcast cannot be exploited. Incoming messages are still processed one

at a time, and our protocol requires that each probe message be acknowledged

with a separate response. Consequently, a process is unable to detect failure

of the controller in less time in a distributed system with broadcast capability

than one without it. This observation is crucial when we attempt to understand

our results for the fail-prone environment later in this chapter.

Theorem 5.7: An interval of sufficient length for the successful prob-

ing, by a process in a distributed system with broadcast, of all processes ahead

of it in the mutual exclusion queue, with constant ti,, and tp, is at most

2 Ntp + 2tsg.

Proof: Follows from Corollary 5.1 and Lemma 5.7. 0

5.4.4 Conducting a Restart

A restarting process sends a restart message to all processes in the

system. After the interval trestart expires, the restarting process will have re-

ceived a reply, which contains a sequence number, from all active processes in

the system. Processes that did not reply by trestart have failed. The highest

sequence number returned by the active processes will be adopted as the local

sequence number of the restarting process. The restarting process enters the

state NCS upon completion of its restart.

When a process restarts, it may send a restart message to an active

process that was never aware of its failure. If this active process is awaiting a

reply from the restarting process, it accepts the message as permission to enter

the critical section. In any case. the active process acknowledges the restart.
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5.4.5 Conducting a Probe

A process inquires as to whether or not there has been a failure in

the system after td,1,1 expires. At this time, a probe message is sent to all

processes with outstanding replies. After tprobe expires, the inquiring process

knows which processes have failed.

Once the probe is completed, the process notifies all other processes

in the system of the failures by means of a FailDis - failure discovered -

message. This message contains the identifiers of all failed processes discovered

by the process that originated the message. Upon receipt of a FailDis message,

a process updates its list of active processes. It is possible to receive a FailDis

message notifying a process of a particular failure, immediately following receipt

of a restart message from the allegedly failed process. We assume that invalid

FadDis messages are ignored through the observation of a grace period that

begins upon receipt of a restart message. We do not attempt to define this

interval. To simplify our simulation, we only respond to valid FailDis messages.

5.5 CR Algorithm

The published CR algorithm makes no mention of failure. Actually, it

is an alleged optimization of the RA algorithm. Its difference is that a process,

which never requests the critical section, is assumed to have given implicit

permission to enter the critical section to all other processes in the system.

Only when that process requests the critical section is the permission revoked.

All message priorities, intervals, restarts, and probes are identical to

those of the RA algorithm. All other facets of the CR algorithm are imple-

mented as published.
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5.6 Schneider Algorithm

The Schneider algorithm is a distributed implementation, where every

process maintains global state. Because each process maintains global state,

every process knows precisely which process is in the critical section, which

processes have or have not acknowledged messages and of which processes the

mutual exclusion queue is comprised.

When a process has failed and attempts to rejoin the algorithm, the

published algorithm recommends using a sponsor process to run a restart pro-

tocol for the restarting process. This protocol involves a significant amount of

message forwarding. After completion of the remote start protocol, the process

then runs a local start protocol. The completion of restart is delayed until cer-

tain further conditions are met. This protocol was designed before the Chandy

and Lamrport algorithm for distributed snapshots was discovered [CL]. We will

use the idea of a sponsor process, but we will use what we know of distributed

snapshots to help us derive a more efficient protocol. We will use the notion of

a sponsor sending a copy of its queue to the restarting process, but only when

the sponsor knows that the restarting process will have access to all messages

from the time at which the queue is sent.

Failure detection has two components. First. when a message is re-

ceived. each process eventually becomes aware of any process that fails to ac-

knowledge the message. Processes that do not acknowledge messages within a

predetermined interval are suspected of failure. The second component consists

of the notion that we are familiar with from all of the previous algorithms: if

the critical section is not released after a predetermined interval, the process

in the critical section is suspected of failure.
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5.6.1 Simulation Parameters Unique to Schneider

The Schneider algorithm adds the following three parameters to a

fail-prone environment:

1. tprobe - the time from when a process, p, sends a message to the process

in the critical section, until p can determine if the process executing the

critical section has failed

2. tack-probe - the time from when a process, p, sends a message to those

processes that have not responded to a message, until p can determine

which of those processes have failed

3. trestart - the interval after which a restarting process that has yet to

receive a message queue knows that its sponsor process has failed

The derivation of these intervals is presented in Section 5.6.3.

Interval Broadcast Distribution Mean Value
tprobe No Constant 2Ntp + 2tms

Yes Constant 2Ntp + 2 tmsg
tack-probe No Constant 4(N - 1tp + 2tm5

Yes Constant (3N - 2)tp + 2 tig
trestart No Constant O(N 2 )tp + 2 tms

Yes Constant O(N")tp + 2t-t'

Table 5.4: Parameter Values for the Fail-prone Environment of Schneider

5.6.2 Message Priorities

There are two types of probe messages in the Schneider algorithm: one

for each component of failure detection. The first is the probe of the process

in the critical section; the second is the probe of any process which does not

acknowledge a message. Both components of failure detection are essential to
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the successful execution of the algorithm in a fail-prone environment. If all pro-

cesses are waiting for the critical section, all messages are fully-acknowledged

and the process in the critical section fails, then the algorithm will deadlock,

unless the process in the critical section is probed. Similarly, if a process re-

leases the critical section, but the request at the front of the mutual exclusion

queue has never been fully acknowledged because of a failed process, then the

algorithm again deadlocks unless the process that never acknowledged the re-

quest is probed. Hence, we must use probes of both types.

With its global state, each process is actually a controller and is ca-

pable of identifying the current process in the critical section. Using the same

reasoning as we did in the BS algorithm, we can minimize tprobe by giving it

the highest priority. If the process at the head of the mutual exclusion queue

sends a probe message to the process in the critical section, and the process

in the critical section has failed, then the process at the head of the queue

can enter the critical section. This observation indicates the importance of the

probe message to the overall performance of the algorithm.

When a process fails to receive an acknowledgement from another

process, it sends an ack-probe message to the process in question. We want to

minimize this interval for several reasons. Failure to receive an acknowledge-

ment from the process in the critical section may indicate that it has failed,

and the process at the head of the mutual exclusion queue can enter the critical

section without waiting for the expiration of tmax. Identifying a failed process

may also be all that is preventing the process at the head of the mutual ex-

clusion queue from entering an unoccupied critical section. Once a process has

failed, its messages can be removed from the queue maintained at each process;

management of a smaller message queue is more efficient for both execution
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and memory purposes. Finally, and most importantly, failed processes will have

their requests removed from the mutual exclusion queue before they reach the

head of the queue and can slow down the algorithm.

Table 5.4 showed that the interval to conduct a probe of processes,

which fail to acknowledge a message, always exceeds that of conducting a probe

of the process in the critical section. Common sense tells us to give highest

priority to the probe of the process in the critical section, while allowing probes

of other processes to serve as an "early warning" fail detection system in the

background. A process will not probe any process with more than one type of

probe message. This protocol obviates the necessity of increasing the interval

tack-probe to account for probe messages that might be sent concurrently with

ack-probe messages.

restart messages will be assigned lower priority than either type of

probe message. Since a process sending probe messages will not send restart

messages, the restart interval will not be compromised. We want a process to

rejoin the algorithm as quickly as possible; therefore, we will assign a restart

message a higher priority than the remaining mutual exclusion messages. We

now have the following priority ranking:

1. probe messages

2. ack-probe messages

3. restart messages

4. all other mutual exclusion messages

5. messages of the underlying computation
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5.6.3 Specifying Intervals

Because every process in the Schneider algorithm maintains global

state, each process knows precisely which other process is in the critical section.

A probe message can be sent directly to the process executing the critical section

when failure is suspected. However, unlike the BS algorithm, which has only

a single controller, it is possible that every active process in the system will

probe the process in the critical section at the same time. Because every process

maintains global state, every process will eventually probe the process in the

critical section - not just those processes waiting in the mutual exclusion

queue. This leads to the following observations about probing the process in

the critical section within the Schneider algorithm. All results are for a fully-

connected network with N processes.

Lemma 5.8: If t msg = 0 and tp > 0, then the time it takes for a

process with gl(,*e' otate, in a distributed system without broadcast, to send a

probe message o the process in the critical section and then receive a reply, is

at most 2NtP.

Proof: Assume that all processes in the system elect to send a probe

message to the process in the critical section. After time tp, N - 1 probe

messages will arrive at the process in the critical section. It will then take time

(N - 1)tp to process those messages and (N - 1)tp to acknowledge them. The

last message will arrive at its destination and be processed in time tp. The

resulting time is tp + (N- 1)tp + (N- 1)tp + tp = 2Ntp. 0

Theorem 5.8: An interval of sufficient length for probing the process

in the critical section by a process with global state in a distributed system

without broadcast, with constant t mg and tp, is at most 2ANtp + 2 tmsg.

Proof: Follows from Corollary 5.1 and Lemma 5.8. 0
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Lemma 5.9: If t, 9 = 0 and tp > 0, then the time it takes for a

process with global state, in a distributed system with broadcast, to send a

probe message to the process in the critical section and then receive a reply, is

at most 2Ntp.

Proof: Assume that all processes in the system elect to send a probe

message to the process in the critical section. After time tp, N - 1 probe

messages will arrive at the process in the critical section. It will then take time

(N - 1)tp to process those messages and (N - 1)tp to acknowledge them. The

last message will arrive at its destination and be processed in time tp. The

resulting time is tp + (N - 1)tp + (N - 1)tp + tp = 2Ntp. C

Theorem 5.9: An interval of sufficient length ter probing the process

in the critical section by a process with global state in a distributcd bystem with

broadcast, with constant tmg and tp, is at most 2Ntp + 2tsg.

Proof: Follows from Corollary 5.1 and Lemma 5.9. C

For conducting a probe of processes that fail to acknowledge a mes-

sage, we must assume that the worst case probe will occur. In practice. this is

an unlikely event, and we can expect probes to be conducted rather efficiently.

However, it is theoretically possible tbat every process will attempt to probe

every other process in the same interval. Ve will stipulate that a process that

sends a probe message to the process in the critical section will not send an

ack-probe message to the same process. Hence, probe messages will not extend

the interval required to conduct a probe of processes that fail to acknowledge

messages. These observations lead to the following results.

Lemma 5.10: If tng = 0 and tp > 0, then the time it takes for a

process with global state, in a distributed system without broadcast, to send a

probe message to another process and then receive a reply, is at most .(,- 1 )tp.
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Proof: Assume that all processes in the system elect to send an ack-

probe message to every other process in the same interval. It takes a process

(N - 1)tp time to send N - 1 ack-probe messages. After sending its last ack-

probe message, each process can expect to receive N - 1 ack-probe messages

from the other processes in the system, which require (N - 1)tp time units

to process; each process must then acknowledge each message in (N - 1)tp

time units. Finally, N - 1 acknowledgements can be expected to its original

messages, which require an additional (N - 1)tp time units to process. The

result is time equal to at most 4(N - 1)tp. 0

Theorem 5.10: An interval of sufficient length for probing an arbi-

trary process by a process with global state in a distributed system without

broadcast, with constant t,9 and tp, is at most 4(N - 1)tp + 21rsg.

Proof: Follows from Corollary 5.1 and Lemma 5.10. 0

Lemma 5.11: If trg = 0 and tp > 0, then the time it takes for

a process with global state, in a distributed system with broadcast, to send a

probe message to another process and then receive a reply, is at most (3N-2)tp.

Proof: Assume that all processes in the system elect to send an ack-

probe message to every other process in the same interval. It takes a process

with broadcast capability t. time to send N - 1 ack-probe messages. Each

process can expect to receive N - 1 ack-probe messages from the other processes

in the system, which require (N - 1)tp time units to process; each process

must then acknowledge each message in (N - 1)tp time units. Finally, N - 1

acknowledgements can be expected to its original messages, which require an

additional (N - 1)tp time units to process. The result is time equal to at most

tp + 3(N - 1)tp = (3N- 2)tp. 0

Theorem 5.11: An interval of sufficient length for probing an ar-
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bitrary process by a process with global state in a distributed system with

broadcast, with constant tsg and tp, is at most (3N - 2)tp + 2 tmsg.

Proof: Follows from Corollary 5.1 and Lemma 5.11. E0

The time to restart is theoretically at most O(N 2 ), because every

process (except one - there must be at least one process acting as sponsor) may

attempt a restart in the same interval. In this case, every restarting process

will send a restart message to every other process, which must be acknowledged

by sending a message to every other process. Even if broadcast is available, a

process may have at most (N- 1)' incoming acknowledgements. Because of the

potentially extended length of this interval, we have chosen to use a different

protocol than that which we might otherwise have chosen if the interval was of a

more reasonable duration. A restarting process will send an ack-probe message

to its sponsor process t,, time units after it receives the first acknowledgement

to its restart message. It cannot set the timer sooner, because it is only after

receiving an acknowledgement that it knows which process is serving as its

sponsor; this particular idea of sponsors is discussed in more detail in Section

5.6.5, At the expiration of tack-probe, the restarting process knows whether or

not its sponsor process has failed. If the sponsor is still active, the restarting

process will wait tr, before probing the sponsor again.

5.6.4 Conducting a Probe

A process conducts a probe of the process executing the critical section

in an identical fashion to that of the controller in the BS algorithm. Conducting

a probe of processes that fail to acknowledge messages, however, is different for

a process that maintains global state.

Because a process maintains global state, it knows precisely which
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processes have failed to respond to a message. It is not required to send a

number of messages "into the blind" and await a reply. Rather, it can send are

you alive messages to specific processes that have not answered. This ability to

identify the processes suspected of failure is in contrast to the RA algorithm,

which must conduct probes without knowledge as to which processes may have

failed.

5.6.5 Conducting a Restart

The restarting process sends a restart message onto every outgoing

communications path. We assume that there is an existent mechanism for

determining an active sponsor for the restarting process. Since each active pro-

cess maintains global state, we do not believe this assumption is unreasonable.

For example, each process may be identified with one other process that it

will sponsor for restart. 'When that process fails, the sponsor process assumes

responsibility for sponsoring any restarts that the failed process was previously

responsible for. This responsibility is maintained by the sponsor process until

it sends its message queue to the previous sponsor process after it restarts.

At that time, the restarting process once again assumes its responsibilities as

a sponsor. The sponsor process for any restarting process is therefore known

throughout the system.

Each process, upon receiving the restart message, acknowledges it by

sending an acknowledgement to every other process. Once the restart message

is fully acknowledged at the sponsor process, the sponsor sends a copy of its

message queue to the restarting process. This implies that all messages received

from each process, up to and including the acknowledgement, are part of the

message queue sent by the sponsor process.
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For its own part, the restarting process ignores all messages that it

receives from any process prior to the acknowledgement of its own restart mes-

sage. This action is possible, because the message queue it receives from its

sponsor will contain all of these messages. Upon receipt of an acknowledgement

of its restart message from a particular process, the restarting process begins

to save and acknowledge all subsequent messages from that process. When its

restart message is fully acknowledged, it will be saving and acknowledging all

incoming messages. When the message queue finally arrives from its sponsor,

the restarting process can update it with the messages it has been saving, dis-

posing of any duplicates. Duplicate messages may be in the queue, because

messages may have been received by the sponsor process from other processes

that acknowledged the restart message and then sent subsequent messages to

the sponsor before the restart message became fully acknowledged at the spon-

sor process. Once the message queue is updated, the restarting process can

rejoin the algorithm.

The restarting process will delay for an interval equal to tma-. If

a queue has not been received at the expiration of troop. then the sponsor

process is probed. If the sponsor process acknowledges the probe, the restarting

process delays for an interval equal to tmaz before probing the sponsor again. If

the sponsor process has failed. the restarting process will send another restart

message into the system. It is possible that a restarting process will never finish

its restart using this protocol. In fact, in small systems with frequent failure,

this protocol can break down completely, because it may be the case that no

process has global state; much like deadlock, every process relies on some other

process to send it the queue, but no other process has the queue. In this case.

the entire algorithm has to be shut down and restarted.
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5.7 Simulation Results

5.7.1 Without Broadcast

The BS algorithm has the property that failures of processes execut-

ing the non-critical section are transparent to the execution of the algorithm.

The only failures that the algorithm must cope with in every case are controller

failures - and elections can be conducted efficiently in small systems. If a pro-

cess fails while waiting entry to the critical section, it may restart before the

system is aware of its failure - in which case its restart message is used by the

controller to remove its request seeking access to the critical section from the

mutual exclusion queue. These helpful properties are in contrast to the fully

distributed implementations, which must cope with all process failures in the

system. We saw in Chapter 4 that all of the algorithms perform comparably

inefficiently in small systems with 7 processes. When frequent process failure

is a factor, we can see that the properties just noted play an important role

in determining which algorithm is most efficient. Since the BS algorithm must

only compensate for controller failures and failures of processes seeking access

to the critical section, it executes relatively unencumbered by frequent failure.

In contrast, it appears that compensation for failure occurs before almost every

execution of the critical section in fully distributed implementations. Conse-

quently, the BS algorithm runs most efficiently in systems with frequent failure

and light contention for the critical section. The RA and CR algorithms ex-

hibit substantially less efficiency. The Schneider algorithm's performance is

not indicated on the graph with 7 processes, because it eventually shuts down

due to the lack of any process holding a current message queue in the presence

of frequent failure. Without a valid message queue held by any process in the

system, there is no sponsor process available for restarting failed processes. In
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any case, it is evident that frequent process failure significantly affects the per-

formance of all of the algorithms in small systems. The Schneider algorithm

has points missing from other graphs when message processing time is large.

These points are well off the graph and are not included.
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The BS algorithm still dominates its fully distributed counterparts

when the number of processes is increased to 13. In fact, even when the number

of processes is increased to 21, the BS algorithm performs most efficiently until

message processing time decreases to 0.015. At that critical point, the cost

associated with transmitting the extra message in the BS algorithm from the
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controller to the next process awaiting entry to the critical section exceeds the

cost associated with propogating more messages and compensating for failure.

The Schneider algorithm with its two levels of failure detection is most efficient

with 13 and 21 processes and small message processing times.

For 31 processes, the BS algorithm performs as efficiently or more

efficiently than its fully distributed counterparts across the spectrum of message

processing time. Only when message processing time decreases to 0.005 do the

RA and CR algorithms slightly exceed the efficiency of of the BS algorithm.
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5.7.2 With Broadcast

The same analysis for the small systems with light contention and

frequent failure in a no-broadcast environment holds for the environment with

broadcast - the BS algorithm continues to execute most efficiently.

We can note that broadcast capability provides a forum for conducting

efficient elections in the centralized implementation of the BS algorithm. Since
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elections are common is small systems with frequent failure and rapid recovery,

the efficiency of the BS algorithm is not surprising.
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As noted previously, broadcast does not enhance the detection of

process failure in fully distributed implementations. Chapter 4 revealed that
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broadcast capability does little to improve the efficiency of small systems. Con-

sequently, we can expect the CR and RA algorithms to perform poorly in small

systems with frequent failure, as failure detection seems to dominate the activ-

ity of the algorithm.

We again note that the Schneider algorithm self-destructs in a system

with only 7 processes, as the queue is eventually lost through a series of rapid

failures.

Unexpectedly, the BS algorithm continues to dominate its distributed

counterparts when the number of processes is increased to 13. The moderate

contention for the critical section by the RA algorithm and the advantages

inherent in broadcast systems are still insufficient to overcome the cost of man-

aging failure. The big surprise, however, is the performance of the Schneider

algorithm, which is the most efficient algorithm across the spectrum of message

processing time for 13 processes.
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It is only when the number of processes is increased to 21 that t he fully
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distributed algorithms exceed the efficiency of the centralized implementation.

This higher efficiency holds to an even greater extent as the number of processes

increases to 31. It is interesting to note that the BS algorithm performs in

an almost identical manner for both 21 and 31 processes. Part of the cost

associated with the BS algorithm may be the thousands of unnecessary probes

of the controller by processes waiting for the critical section. For a 31-process

system with tp = 0.00.5, there is an average of 7 probes sent to the controller

every time unit. Even though the communications medium is fully-connected,
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these probe messages will have an impact on the efficiency of the algorithm

- especially since probe messages are assigned higher priority than the other

mutual exclusion messages that are part of the algorithm. An alternate protocol

might lower this number of unnecessary probes and improve the performance

of the BS algorithm. Perhaps the biggest surprise continues to be the efficiency

of the Schnfidcr algorithm in fail-prone systems with small message processing

times.
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Chapter 6

Conclusions

The contributions of this research can be classified into five main

areas:

1. Definition of an underlying distributed system.

2. Identification of new performance metrics to measure the efficiency of

distributed mutual exclusion algorithms.

3. A model of distributed mutual exclusion algorithms and analytical ap-

proximations of their performance.

4. Indepth simulation of distributed mutual exclusion algorithms on fully-

connected, ring and star topologies.

5. Indepth simulation of distributed mutual exclusion algorithms on a fully-

connected topology where processes may fail.

First, we have defined a model of an underlying distributed system,

which represents a loosely coupled network where processes communicate only

by exchanging messages. With this model, we identified and defined the pa-

rameters associated with both fail-free and fail-prone environments.

Second, we have identified a robust performance metric that enables

one to compare the efficiency of all distributed mutual exclusion algorithms on

136
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any topology with any number of processes. This metric results in an immediate

ranking of any algorithm for which we might seek performance measures.

Third, with an underlying system defined, and a performance met-

ric identified, we introduced a state model of distributed mutual exclusion

algorithms. This model enabled us to accurately predict the performance of

centralized, fully distributed and hybrid implementations of mutual exclusion

algorithms on a variety of topologies. The usefulness of the model was vali-

dated by applying it to a newly-published tree-based algorithm. We accurately

predicted how this new algorithm performs on a fully-connected topology.

Fourth, we charted the performance of our algorithms in a fail-free,

fully-connected distributed system. We followed that by describing perfor-

mance results for a fail-free environment on ring and star topologies. These

results indicate when a particular algorithm is appropriate for use in broadcast

and no-broadcast systems.

Finally, we charted the performance of the RA, CR, Schneider and BS

algorithms in a fail-prone environment where frequent failure and rapid recov-

ery of processes are the norm. These results identify which algorithms perform

most efficiently in broadcast and no-broadcast distributed systems with fully-

connected topologies. In conjunction with obtaining these results, we identified

three aggressive restart protocols and identified the intervals necessary to suc-

cessfully detect failure.

6.1 Modeling the Underlying Distributed System

We have presented a detailed model of an underlying distributed sys-

tem. Our model is a representation of loosely-coupled networks where message

transmission time is significant and messages are queued at the destination.
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Parameters to our model in the absence of failure are the following:

o N - number of processes in the system

* tc - time a process spends executing outside the critical section

0 t8 - time a process spends executing within the critical section

0 tp - message processing time

0 tMS9 - message transmission time

o broadcast - whether or not a system has broadcast capability

o topology - the topology of the communications medium

When process failure is introduced, the following parameters are added to the

model:

" tf ,l - interval between process failures

" tdelay - time from when a process sends a message, until it inquires

whether or not the receivcr failed

* tprobe - time it takes a process to determine whether another process has

failed

* tdead - time a process remains failed

* treboot - time from when a process becomes active until it is ready to run

a restart protocol

We can program centralized, fully distributed or hybrid implemen-

tations of distributed algorithms within the context of our model. Using the

parameters defined for the model, we can explore the performance of both

fail-free and fail-prone systems.
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6.2 Choosing a Performance Metric

We have shown that the current metric in use to compare the perfor-

mance of distributed mutual exclusion algorithms is not, by itself, uffi * ,, to

quantify their efficiency. This metric is the number of messages sent for each

use of the critical section. The widespread use of this metric is not surprising

- it is well-defined and easily calculated. Since the communjications medium

is a shared resource, it seems logical that the fewer the messages required,

the better the algorithm. Using this metric, our algorithms are rated under

conditions of maximum contention as follows:

1. BS - 3 messages

2. Mackawa - 4VV messages

3. CR and RA - 2 * (N - 1) messages

4. Schneider - 2 * N * (N - 1) messages

But when message processing time is negligible, we find that the algorithms

are rated as follows when we measure the interval from when one process exits

the critical section until the next process enters:

1. CR, RA and Schneider- tM 9

2. Alaekawa 2N-K t"13

3. BS - 2tmg

These rankings are inconsistent. The second ranking clearly shows that the

BS algorithm is least efficient; yet the first ranking indicates that it sends the

fewest messages for each use of the critical section.
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We showed that we can build on the idea of the number of messages

sent per use of the critical section by the introduction of two new metrics.

Since messages burden the sites in the distributed system that must transmit

and receive them, our first metric considers the number of messages that must

be transmitted or received by each process in the system for a particular algo-

rithm. And, because mutual exclusion messages contend with one another in

the network, our second metric considers how these messages are distributed

over time.

These two metrics poignantly revealed the shortcomings of the Schnei-

der algorithm. The Schneider algorithm heavily burdens every process by re-

quiring all processes to send and receive 2 * (N - 1) messages for every use of

the critical section - including those processes which never seek access to the

critical section. By examining how the Schneider algorithm behaves over time,

it becomes clear that the Schneider algorithm regularly sends large bursts of

messages into the network. In all but a fully-connected network, it appears the

Schneider algorithm will perform poorly.

The fully distributed implementation of both CR and RA require the

process seeking access to the critical section to send and receive most of the

messages. The process never seeking access to the critical section must send

and receive a single message. Over time, these algorithms send fairly large

bursts of messages into the system at regular intervals. If messages should be

routed through a small number of nodes in the communications medium, it

appears that these algorithms may suffer from the effects of contention.

The hybrid algorithm of Maekawa requires the process seeking access

to the critical section to send and receive 2V'RN messages for each use of the

critical section. Processes never seeking access to the critical section average
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sending and receiving less than a single message for each use of the critical

section. We can also note that small numbers of messages are sent into the

communications medium at regular intervals.

These new metrics show that the BS algorithm operates efficiently

both in number of messages sent and received and in the area of message

conjestion over time. A process that does not seek access to the critical section

does not take part in the mutual exclusion algorithm; only the central controller

and the process seeking access to the critical section need exchange 3 messages.

Over time, the BS algorithm sends a negligible number of messages into the

network.

Our analysis using these metrics has been a subjective one. It will

change, depending on the topology. For example, those algorithms sending

bursts of messages into the network will perform less efficiently on a star topol-

ogy than on a fully-connected topology; how much less efficiently is not clear.

In addition, these metrics do not address the length of the chain of messages

between events in a distributed system. These shortcomings were motives for

finding additional metrics of performance.

A completely different approach to selecting a performance metric

requires viewing the critical section as a shared resource for which processes

throughout the distributed system contend. With this view, the critical section

is modeled by the classical "queue/server pair" from queueing theory. The

server represents the critical section which serves a single process at a time;

the queue represents the set of processes seeking access to the critical section.

This model presents four common performance metrics: the number of critical

section usages per time unit (throughput); the elapsed time between requesting

the critical section and acquiring it (response time); the number of processes
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waiting to acquire the critical section (queue length); and the proportion of

time the critical section is in use (utilization).

We have argued that all four of these metrics result in an identical

ranking of performance when there is maximum contention for the critical

section. Our task was to determine which of these four metrics is most useful for

the purpose of ranking distributed mutual exclusion algorithms. Our goal was

to create a "fingerprint" of an algorithm's performance; once this fingerprint is

obtained for a group of algorithms, it is desirable that a ranking immediately

follow. When two fingerprints are "equal", the efficiency of the algorithms

should be equivalent. When one fingerprint is in some sense "smaller" than

another, the algorithm with the smaller fingerprint should be more efficient

than the algorithm with the larger one. One method of obtaining a fingerprint

is by use of a ratio. We decided to use the performance measurements of the

idealistic algorithm for creating this ratio.

Since , = 1.0 for our simulations and by the the Utilization Law,

U = XS, we know that U,., = XCS - therefore. either utilization or throughput

will give us an identical result. We have arbitrarily chosen utilization as being

preferable to throughput. We have already noted that Uidea = 1.0 for the

critical section of the idealis'tic algorithm. By taking the ratio , we compute

a value greater than 1. For instance, when message processing time is negligible.

URA - -.When tms1g = 0.1 and tcs = 1.0, - - 1- = 1.1. For the BS
UC+Mg1RA 1

algorithm, -v-s - 1.2 = 1.2. These fingerprints show that the RA algorithm
(IRS I

is more efficient than the BS algorithm under our assumption of negligible

message processing time.

We also might have chosen response time, or queue length as the

performance netric friom which we obtain a ratio. What we found, however, was
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that the queue length and response time for the ideal algorithm vary according

to the number of processes in the distributed system. Suppose, for example,

we wish to compare the efficiency of the RA algorithm on a 21-process system

with itself on a 31-process system. By looking at mean response time and

queue length data of the idealistic algorithm, we find it is different for 31 and

21-process systems. With no common denominator in the ratio, we cannot

directly compare performance of the algorithm on two systems of different

sizes. Only with a common basis of comparison can we determine the overhead

added to the algorithm with the addition of more processes to the system.

We find that not only is Uideal easy to calculate (it's always 1.0), but

it provides a common basis for the comparison of the performance of all mutual

exclusion algorithms, independent of the number of processes in the system.

We will also find that we can compare the performance of these algorithms on

varying topologies using the metric of utilization in both fail-free and fail-prone

environments; hence, we can also measure the impact of changing topology or

adding process failure to a particular algorithm.

Our next requirement was to determine if we could analytically pre-

dict the performance of our mutual exclusion algorithms on varying topologies.

We developed a model based on the state of a distributed system and the

application of a function to that state [AB].

6.3 Analyzing the Effects of Topology

Every mutual exclusion algorithm consists of two distinct parts:

1. How the next process is chosen to enter the critical section when the

critical section becomes available.



144

2. How the chosen process recognizes it has been selected.

The first part of a mutual exclusion algorithm, how the next process is chosen

to enter the critical section, requires that an algorithm provide a mechanism

whereby a process is chosen to enter the critical section from among those

processes waiting to enter it. This mechanism can be thought of as applying a

function f to the state S of the distributed system and then rendering a decision

d as to which process is next to enter the critical section. The application of the

function is dependent on the state maintained by each process in the system.

f (S) -- d

We have already noted that the state of some process i is denoted by si, and

the state of the distributed system, S, is the set of states consisting of the state

of every process in the system. We defined S as Usi.

A process that maintains global state S has a "snapshot" of the state

of the system [CL]. At the other end of the spectrum, a process that maintains

only its own local state, si, disregards the state of the other processes in the

system. A process may also maintain partial state - something more than

its own state, but less than global state. Partial state may not be a subset of

global state; for example, a process may not know what state another process

is in, but it may know what state it isn't in.

The second part of a mutual exclusion algorithm, how the chosen

process recognizes it has been selected, follows directly frc m the application of

the function f. If f is a distributed function and is applied by every process in

the system to its local state, it may be the case that (1) every process maintains

global state and can immediately determine which process is next to enter the

critical section; or (2) every process maintains partial state and can immediately
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determine whether it has been chosen to enter the critical section or that it

must wait for some number of subsequent release messages before accessing the

critical section. In either of these cases, when a distributed function is applied

to the local state of a process, the process can determine whether or not it has

been chosen to enter the critical section, thus assuring mutual exclusion. If f is

a centralized function and is applied by only the central controller, the decision

d must be relayed by the controller to the chosen process.

The tradeoff between distributed and centralized implementations is

now clear. The more local state a process maintains, the more messages an

algorithm must send for each execution of the critical section. However, every

process can apply f to its own local state and determine d. The less local

state a process mantains, the fewer messages an algorithm must send for each

execution of the critical section. However, when f is applied by only the central

controller, d must be relayed to the chosen process. If it is more expensive to

update local state than it is to relay d, then the centralized algorithm is the

preferred implementation. If it is more costly to relay d than it is to update

local state, then a distributed implementation is the preferred algorithm. The

purpose of most hybrid algorithms is to reduce the number of messages required

to update local state as well reduce the number of relays of d to the processes

chosen to enter the critical section. These observations were necessary before

we could accurately assess the performance of distributed mutual exclusion

algorithms using analytical techniques.

We examined the performance of three mutual exclusion algorithms

on three widely different topologies. Our three algorithms were the central-

ized implementation of BS, the hybrid implementation of Maekaua, and the

fully distributed implementation of RA; these three algorithms are represen-
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tative of the spectrum of distributed mutual exclusion algorithms. The three

topologies chosen to garner our results were a fully-connected, ring and star

configuration. The fully-connected topology represented the optimum configu-

ration where contention is minimized and the diameter of the network is one.

The ring topology represented a configuration with the greatest diameter short

of a network where all processes are linked in a straight line. The star config-

uration represented a topology with maximum contention, where all messages

are routed through a single central hub.

Before acquiring analytical results, we had to determine what quantity

we would attempt to measure. Since our metric of choice is utilization, our

measure should easily translate into utilization. Without message processing

time, we easily computed the interval between successive executions of the

critical section. We then transformed this interval into utilization. The RA

algorithm, for example, requires tins9 time between each execution of the critical

section when message processing time is negligible. Since S,, = 1.0 for our

results, we computed UR4 = 1 If we can factor in message processing

time and contention, then this interval is a useful measure to obtain with our

analytical method.

6.3.1 Fully-connected Topology

Without. significant message processing time, analytical results for the

fully-connected topology are trivial.

1. RA - tmg

2. Maekawa - 2N-K't

N 139

3. BS -- 21 .9
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We must now factor in message processing time and contention.

CS queue

Figure 6.1: Queueing Network for Analytical Results

Using a Markov chain, we derived the following M/M/l/oo/m queue-

ing formula for the queueing network shown in Figure 6.1.

1

p(n) =

n=0

This formula is useful for several reasons. First, we can observe that processes

waiting for the critical section do not send request messages for the critical

section; consequently, if we can determine the length of the mutual exclusion

queue, then we can determine how many processes will send request messages

into the network. Second, when a process in a fully distributed implementation

releases the critical section, it sends a message to all processes waiting in the

mutual exclusion queue.

For the RA algorithm, with tc, = 1.0, t ,g = 0.1 and tp = 0.005, we

obtain S,, = 1.11 for our M/M/1/oo/m queueing formula. Letting m = 31, we
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compute Q,, - 22. If we assume that a process exiting the critical section will

send the message releasing the critical section to the next entering process, on

the average, half-way through the messages it sends to those processes waiting

for the critical section, we derive the following formula for our interval between

each execution of the critical section:

QC tinS9 + tJ,

2 t

However, we still have not factored in contention.

When a process requests the critical section, it sends a message to

every process in the system. We can expect contention, then, at every pro-

cess. We can use a hcuristic where we assume that processes requesting the

critical section contend for a common communications path. With our queue-

ing formula, we then compute the mean number of messages on the common

path at any one time. By then assuming this mean value represents worst-case

contention at the CIP, we derive our interval. We have 22 processes in the

mutual exclusion queue and 31 processes in the system; that leaves 9 processes

to request the critical section. By letting m = 9, t,,ag = 0.1 and tP = 0.005,

we obtain Spath = 0.11. Our queueing formula can then be used to compute

Qcip = 0.10722. Our formula for the interval between successive executions of

the critical section for the RA algorithm now becomes:

2-tP + tins9 + QcIPtP + tp

We did a similar derivation for the BS and Maekawa algorithms. Figure 6.2 and

Figure 6.3 chart the relative error between actual results obtained with simula-

tion and our analytical results derived using the heuristic described here. The

figures indicate that our analysis was excellent for a fully-connected topology.
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Figure 6.2: Relative Error in Analytical Approximation - 21 Processes in a

Fully-connected Topology

6.0 Mae 2

5.0-

4.0-
Ee .Aive

3.0- 4

2
2.0-

4

1.0
4

0.0 I I I I
0.025 0.020 0.015 0.010 0.005

Decreasing message processing time

Figure 6.3: Relative Error in Analytical Approximation -31 Processes in a

Fully-connected Topology

6.3.2 Ring Topology

For a ring topology, the notion of the length of the chain of messages

between each event within a distributed system helped us establish performance

in an environment without failure and with negligible message processing time.

For example, the length of the chain of messages for the RA algorithm is one.
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In addition, we can expect a reply message to travel half-way around the ring

before reaching the process which is next to enter the critical section. Therefore,

we can expect the interval between successive entries to the critical section to

be -tmsg time units for systems with an even number of processes and -tms 9

time units for systems with an odd number of processes.

For the BS algorithm, exactly one trip around the ring is required for

each execution of the critical section; the controller issues a grant message to

the next process to enter the critical section, and the user of the critical section

sends a release message back to the controller when it exits. The expected

interval between successive entries to the critical section is therefore Nt,.9

time units.

Using the probabilities associated with each scenario in the A'aekawa

algorithm, we can expect performance equal to (tm 9 ) + )(Nt =

2N 2K,, for ring topologies with an even number of processes. Our ranking

for the ring topology is the following:

1. RA - Nt,

2. Maekawa -2NK tI9

3. BS - Nt,,g

We now add message processing time and contention to our model.

Since every message is handled twice at each intermediate CIP, once

by the sender and once by the receiver, we have 2Ntp message processing time

for each message sent on a ring. With m = 31, t,. = 1.0, ti, 9 = 0.1 and tP =

0.005, we derive Sc = to, + 15tmg + 30tp = 2.65 time units for the performance

of the RA algorithm. Using our M/M/1/oc/m queueing formula, we compute



151

Q,, ; 28. Utilizing the heuristic where only those processes executing outside

the critical section and not waiting for the critical section send messages, we

solve for Qcjp. Since a message travels N - 1 hops before being removed from

the ring, we derive Spath - (N - 1)tmsg + 2(N - 1)tp = 3.3 time units. With

n = 3, we compute Qcip = 1.029606 using our queueing formula. But we must

realize that this value represents contention for the entire ring. If we disperse

this value equally across the ring, then contention becomes negligible. Hence,

our estimate of 1.65 time units as the interval between successive entries to the

critical section serves as a final result.

7.0

6.0- 4

re la tiv e e 

1

error 2
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1.0-

2 1 1

0.0 1
0.025 0.020 0.015 0.010 0.005

Decreasing message processing time -

Figure 6.4: Relative Error in Analytical Approximation - 21 Processes in a

Ring Topology

The assumption of negligible contention holds for the BS and Maekawa

algorithms as well. Using our initial estimate and identical heuristics, we com-

puted the relative errors shown in Figure 6.4 and Figure 6.5 for the ring topol-

ogy. These figures show that we can effectively analyze the performance of an

algorithm on a ring topology.
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6.3.3 Star Topology

Analytical results for the star topology proved the most difficult to

obtain. Contention was not significant in the two previous topologies, but it

becomes an important part of our results for the star configuration.

With negligible message processing time, there is no contention in

the star topology. With the hub of the star serving as controller in the BS

algorithm, the time between critical section executions is 2 tmg. For the RA

algorithm, a message must travel to the hub and then be forwarded to its

destination. With ti,g time required for each hop, the time between successive

executions of the critical section is also 2 tm,,. For the Maekawa algorithm,

every process is a controller. This means that the centralized portion requires

a process to send messages over the hub - the hub cannot act as a controller.
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For the centralized portion of the algorithm, there will be 4 tmg time units

between successive entries to the critical section. The fully distributed portion's

performance equals that of the RA algorithm. We derive the following estimate

of performance for the Maekawa algorithm on a star topology with negligible

message processing time:
KN -K 4N - 2K

K( 2 tmsg) + N- (4tmsg) = N tmsg

We have the following ranking of our algorithms on a star topology:

1. BS and RA - 2tmg

2. Afackawa -4NNK tMS

Because thle BS1. algorith~m generatcs littLlc contenio except at the

controller, our previous heuristic yields an excellent estimate of performance.

With m = 31, tP = 0.005 and tin, 9 = 0.1, we derive S,, = 1.22 and Spath = 0.11.

We now obtain the following results:

Q,, = 23

Qc P = 0.09404

The time between successive executions of the critical section is:

2tmsg + 4t + Qc'ptp = 0.220470

The actual simulation result of 0.218660 gives us a relative error of 0.8%. Be-

cause of contention at the hub, this simple analysis is not sufficient for either

the RA or Maekawa algorithms.

For the RA algorithm, S,, = t,. + 21mg + 4lp serves as an initial

estimate for the interval from when one process exits the critical section until
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the next process enters. We can use this value to derive Q,, as we have in the

past; we now have the following formula as our interval for successive entries

to the critical section:
2tmsg + 3tP + 2Es t

2 p
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Figure 6.6: Relative Error in Analytical Approximation - 21 Processes in a

Star Topology
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We still have yet to factor in contention. Since the hub can only

process messages sequentially, a message will not be sent until the previous

message has been fully transmitted. If the previous message is a request mes-

sage, there may be up to m - 1 messages that must be transmitted until the

subsequent message can be sent. If n processes are available to send request

messages into the system, then for each request message sent there are n - 1

reply messages sent also. If m is the number of processes in the system and Q,

is the number of processes awaiting mutual exclusion, then n = m - Q,,. Our

measure for contention now becomes:

QcIP = QcIp(rntp) + Qcip(m - Q's - 1)tp

Since Qcii' is defined in terms of itself, an iterative technique is the

most obvious solution. To ensure that our results converged while using an iter-

ative technique, we interpolated queue lengths for our M/M/1/oC/m formula,

which takes only integer values.
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Figure 6.8: Relative Error in Analytical Approximation - 21 Processes in a

Star Topology with1 Broadcast
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We found that this same iterative heuristic using interpolation was

also necessary to successfully estimate the performance of the Maekawa algo-

rithm. Figure 6.6 and Figure 6.7 sho.v the relative errors computed using these

heuristics for a system without broadcast capability. Figure 6.8 and Figure 6.9

show the relative errors for a system with broadcast capability. We see that for

systems without broadcast, we had difficulty deriving the performance of the

RA algorithm at large message processing times. For systems with broadcast,

we derived excellent results for virtually all of the algorithms.
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Figure 6.9: Relative Error in Analytical Approximation - 31 Processes in a

Star Topology with Broadcast

6.3.4 Applying the Model to New Algorithms

We applied the methodology just described to a recently published

distributed mutual exclusion algorithm [Raym]. We overlayed the radiating

star topology suggested in the paper onto a fully-connected network. Relative

error of our estimates to actual simulation results was less than 4.0% for a

21-process network for all message processing times. These results confirmed
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the usefulness of the model.

6.4 Catalog of Fail-free Simulation Results

We have two parameters that vary on a distributed system that does

not experience failure. These parameters are message processing time, tp, and

the number of processes, N, in the system. Our goal in this section is to present

the results in such a way that one can view graphically which algorithm is most
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Figure 6.10: Algorithms in Fail-free Environment on Fully-connected

Topology
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suitable for a particular system. We also varied topology when examining

the BS, RA and Maekawa algorithms in steady-state systems with 21 and 31

processes.

31
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C CRCR RA
RA R
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Figure 6.11: Algorithms in Fail-free Environment on Fully-connected

Topology with Broadcast

In our figures, if more than one name appears within a block, it is

because there is negligible difference in performance between the algorithms.

We conducted a finite number of simulations. Therefore, the boundaries of

the areas marked on our graphs may not occur exactly at 7, 13, 21 and 31
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processes, nor exactly at message processing times of 0.005, 0.010, 0.015, 0.020

and 0.025.

6.4.1 Fully-connected Topology

The majority of our results were for the fully-connected topology. In

general, in systems without broadcast, the centralized algorithm performed

best in large systems with large message processing times; fully distributed

algorithms perform best in almost all other systems. In small systems, no al-

gorithm performed noticeably better than the others. Only as the number of

processes increased past seven did the fully distributed implementations be-

gin to perform more efficiently. With broadcast, fully distributed algorithms

perform most efficiently virtually all of the time. For very small broadcast sys-

tems, the Maekawa algorithm appeared to be most suitable for small message

processing times.

Figure 6.10 presents no surprises. During light contention, we expect

the algorithms to perform with similar efficiency, since each process in all of

the algorithms must request permission and receive a reply in order to enter

the critical section. As contention increases, the mean length of the chain of

messages approaches one for the fully distributed algorithms, and their perfor-

mance begins to become more efficient than the others. As message processing

time increases, the efficiency of the various algorithms become nearly equiva-

lent for all but the Schneider algorithm. As message processing time and the

number of processes continues to increase further, the fewer messages sent by

the BS algorithm makes it most efficient in spite of its longer chain of messages.

Figure 6.11 reveals the efficiency of the fully distributed algorithms in

fail-free broadcast systems throughout the range of message processing time and



161

number of processes. One of the more interesting results is that the Maekawa al-

gorithm is most efficient in small systems with small message processing times.

Since the Maekawa algorithm does not necessarily enforce a total order on the

FIFO mutual exclusion queue, it appears that with 7 processes and K = 3

that it captures the best of the centralized and fully distributed implementa-

tions. As the number of processes increases, however, the Maekawa algorithm

generally exhibits the negative characteristics of the two implementations.

6.4.2 Ring Topology

The fully-distributed implementation of the RA algorithm performs

most efficiently on a ring topology throughout the spectrum of message pro-

cessing time. The Maekaiva algorithm is a distant second in efficiency with

the BS algorithm a close third. The ring topology never generates significant

contention, since the system allows multicasting. Hence, the distributed imple-

mentations never generate the large number of messages that might otherwise

impede their performance.

6.4.3 Star Topology

The centralized implementation of the BS algorithm runs most ef-

ficiently on a star topology. The star topology is a virtual reflection of the

centralized implementation of mutual exclusion, and any other result would

have been surprising. In addition, since the other algorithms send numerous

messages across the hub of the network (even with multicasting), a bottleneck

develops amidst the contention which grows rapidly as message processing time

increases. Not surprisingly, the Mackawa eventually performs more efficiently

than the RA algorithm as message processing time grows.
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Adding broadcast capability to the system does not change our result

with the BS algorithm performing most efficiently across the spectrum of mes-

sage processing time. However, with broadcast, the RA algorithm performs

more efficiently than the Maekawa algorithm.

6.5 Catalog of Fail-prone Results
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Figure 6.12: Algorithms in Fail-prone Environment on Fully-connected

Topology

Our fail-prone results were derived on a fully-connected topology. We

found that in small systems, the centralized implementation of mutual exclusion



163

performed most efficiently. Since those processes not seeking access to the

critical section can fail transparently to the system, we see a large advantage in

the efficiency of the centralized algorithm compared to the others. Only when
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Figure 6.13: Algorithms in Fail-prone Environment on Fully-connected

Topology with Broadcast

the number of processes exceeds 13 and approaches 21 do the fully distributed

implementations begin to perform more efficiently; we see that as the number

of processes increases, it becomes less likely that a process waiting near the

head of the mutual exclusion queue will have a process ahead of it fail. There-

fore, the RA algorithm can capitalize on its shorter chain of messages between



164

executions of the critical section, resulting in greater efficiency. However, as

message processing time continues to increase, the BS algorithm once again be-

comes most efficient in an environment without broadcast. In one of the more

surprising results, the Schneider algorithm performs most efficiently in systems

with 13 processes and message processing times of below 0.015 and in systems

with 21 processes and a message processing time of below 0.010. The two-level

failure detection scheme of the Schneider algorithm works effectively at these

particular values. Processes that are waiting for entry to the critical section

and then fail are primarily detected before they reach the head of the queue.

That is, failure is detected when the failed process does not acknowledge a

message, not when it has failed to release the critical section. In contrast, the

RA and CR algorithms rely exclusively on detecting failure of processes in the

critical section, and they run less efficiently in systems of this size. However,

when the number of processes increases to 31, the Schneider algorithm begins

to thrash as large numbers of ack-probe messages are sent into the network.

Even when message processing time is small, the Schneider algorithm proves

itself inefficient in relation to the other algorithms in large systems. The win-

dow where the Schneider algorithm is most efficient in non-broadcast systems

is a fairly small one.

With broadcast, the centralized algorithm still dominates in small

systems, while larger systems run more efficiently with fully distributed al-

gorithms. The Schneider algorithm again proved the advantage of detecting

failure with two separate mechanisms. It has surprising efficiency throughout

all message processing times when there are 13 processes in the system and

when message processing time is small in 21 and 31-process systems.
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6.6 Summary

Our results indicate that the centralized implementation of mutual

exclusion is superior in performance to its fully distributed counterparts in

numerous types of networks. In systems with frequent process failure, the cen-

tralized algorithm can execute more efficiently in networks with small numbers

of processes. Even in small systems with broadcast capability, the BS algo-

rithm exhibits superior performance in the presence of frequent, process failure.

Though we have examined only systems that experience frequent process fail-

ure, it is significant that the centralized implementation proves to perform

more efficiently than its distributed counterparts in the presence of failure in

systems where the distributed algorithms performed most efficiently without

failure. We have also shown that in broadcast systems with 21 or more pro-

cesses, a distributed implementation is preferable in the presence of frequent

process failure; we can expect that this result holds for all levels of failure

as the distributed implementations also proved most efficient in identical sys-

tems in fail-free environments. The surprising results noted for the Schneider

algorithm appear to indicate that some sort of failure detection scheme that

augments detection of process failure in the critical section may be desirable

in some systems. Topologies may also prove decisive in the selection of an

algorithm. The centralized algorithm is far more efficient on a star topology

than its hybrid or fully distributed counterparts; this observation can possibly

be generalized to other systems with heavy contention. In contrast, the fully

distributed algorithms are most efficient on a ring topology which has little

contention and where the interval required for a message to travel from sender

to receiver is large. The length of the chain of messages is shorter in fully dis-

tributed implementations, and they will be more efficient when contention is
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not a factor. These results all indicate that many variables must be prudently

weighed before a decision is made as to which algorithm performs best in a

particular environment.

Our model of computation enables us to reasonably predict the per-

formance of distributed mutual exclusion algorithms. Networks with little con-

tention prove easiest to solve analytically. Networks with heavy contention

proved more difficult to solve accurately. As message processing time increased

and contention grew, our results became less accurate. We applied the model

to a newly-published tree-based algorithm. Our prediction of its performance

was confirmed through simulation of the new algorithm. We believe it is pos-

sible to apply this model to any distributed mutual exclusion algorithm and

make a reasonably accurate estimate of its performance on a given topology.

In any event, it is clear that there is much to be learned about the per-

formance of distributed algorithms. Selecting appropriate metrics, predicting

performance and simulating algorithmic behavior in fail-prone environments

are a necessary pait of the learning process.

6.7 Future Work

This section discusses some of the limitations of this work and iden-

tifies areas for future research.

6.7.1 Limitations

Our model of the underlying distributed system was designed specif-

ically for distributed mutual exclusion algorithms. Other algorithms may in-

troduice new parameters into our model and eliminate some of those we have

identified. A more general model, which allows incorporation of new parame -
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ters into the model easily, will make it more attractive as a basis for studying

distributed algorithms.

Our model of the underlying distributed system is also designed around

process failure; the CIP does not fail and the network never partitions. The

model does not provide sufficient detail to parameterize these important areas

of concern.

Utilization is a useful metric for resource contention. It does not

appear to be a general metric sufficient to measure the performance of all

types of distributed algorithms. However, our metric of the "interval between

successive executions of the critical section" can be generalized to the "interval

between successive events in a distributed system". We have shown that this

metric can be translated into utilization for the study of mutual exclusion;

perhaps it can also be translated into meaningful metrics for other applications.

Our model for predicting the performance of distributed mutual ex-

clusion algorithms provides excellent results for all topologies with little con-

tention. When contention becomes a factor, our model still provides excellent

results for systems with small message processing times. However, as message

processing time atid the accompanying contention grow, our estimates of their

performance become less accurate.

Our fail-free simulation results provide insight into the performance

of distributed mutual exclusion algorithms on varying topologies. However, we

have limited ourselves to a small range of parameter values; there are many

other values to be explored.

Finally, our fail-prone simulations assume worst-case intervals for de-

termining the presence of failure within a system. Our simulations also only

address frequent, process failure, and they only examine full':connected topolo-
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gies. Other levels of failure should be inspected and other topologies used as a

basis for results.

6.7.2 Enhancements

Several major areas of enhancement to the work are available. First,

we can explore the performance of tightly-coupled networks. Tightly-coupled

networks introduce new topologies: hypercube and grid to name two of them.

They also introduce a host of different issues. Several of these issues are the

queueing of messages at the host and message processing time that exceeds

message transmission time.

Second, we have not attempted to predict the performance of our

algorithms in the presence of process failure. With a given failure rate and the

intervals identified for discovering failure, it may be possible to estimate the

performance of our algorithms in the presence of failure.

Third, the intervals for determining when a process should query an-

other process as to whether or not it has failed can be adjusted to reduce the

number of probe messages sent into the system. Extending these intervals has

the negative effect of allowing a failed process to go undetected for a longer

period of time; however, it has the positive effect of reducing the number of

messages sent into the communications network by the algorithm.

Fourth, the algorithms that we have simulated can all be improved

both in the fail-free and fail-prone environments. It appears possible to apply

all that has been discovered with our simulations and create an "optimal"

algorithm for both a fail-prone and fail-free system. It may be the case that

the optimal algorithni for a fail-prone environment is quite different for that of

a fail-free one: it may also be the case that we can construct one that is the
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best compromise for both environments. This is an area that is wide open for

research.

6.7.3 Epilogue

There are numerous distributed algorithms for which elegant solutions

are proposed. Questions are still open as to their efficiency and robustness.

Identification of metrics to measure their performance and methods to predict

their efficiency are still large' unknown.



BIBLIOGRAPHY

[AB] Aahlad, Y. and Browne, J.C. (1987): Balanced protocols for se-

quencing distributed computations; TR-87-39, Dept of Computer

Sciences, University of Texas at Austin.

[AHU] Aho, A.V., Hopcroft, J.E., and Ullman, J.D. (1974): The design

and analysis of computer algorithms; Addison-Wesley Publishing

Company.

[AL] Andrews, G. and Levin, G. (1982): On-the-fly deadlock prevention;

Proceedings of the A CM SIGACT-SIGOPS Symposium on Princi-

ples of Distributed Computing, 165-172.

[AlSa] Albert, A.A. and Sandier, R. (1968): An introduction to finite pro-

jective planes; Holt, Rinehart and Winston, Inc.

[AS] Andrews, G.R. and Schneider, F.B. (1983): Concepts and notations

for concurrent programming; Computing Surveys 15 (1), 3-43.

[Bag] Bagrodia, R. (1987): On the design of high performance distributed

systems; PhD Dissertation, Dept of Computer Sciences, University

of Texas at Austin.

[BCM] Bagrodia, R., Cbndy, K.M., and Misra, J. (1987): A message-

based approach to discrete-event simulation; to appear in IEEE

Transactions on Software Engineering, Dept of Computer Sciences,

University of Texas at Austin.

170



171

[Brul Brumfield, J. (1987): Concurrent programming in Modula-2; Eigh-

teenth SIGCSE Technical Symposium on Computer Science Educa-

tion, 191-200.

IBS83] Buckley, G. and Silberschatz, A. (1983): An effective implemen-

tation for the generalized input-output construct of CSP; ACM

TOPLAS 5 (2), 223-235.

[BS84] Buckley, G. and Silberschatz, A. (1984): A fault tolerant central-

ized mutual exclusion algorithm; Fourth International Conference

on Distributed Computing Systems, 347-356.

[BT] Bracha, G. and Toueg, S. (1984): A distributed algorithm for

generalized deadlock detection, Proceedings of the ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing, 285-

301.

[CG] Chang, C. and Gouda, M. (1987): Bidding against conspirators-

in preparation, Dept of Computer Sciences, University of Texas at

Austin.

[Cha87] Chandy, K.M. (1987): A theorem on termination of distributed

systems TR-87-09, Dept of Computer Sciences, University of Texas

at Austin.

[CL] Chandy, K.M. and Lamport, L. (1985): Distributed snapshots: de-

termining global states of distributed systems; ACM Transactions

on Computer Systems 3 (1), 63-75.

[CM82] Chandy, K.M. and Misra, J. (1982): A distributed algorithm for

detecting resource deadlocks in distributed systems; Procudings



172

of the ACM SIGACT-SIGOPS Symposium on Principles of Dis-

tributed Computing, 157-164.

[CM84] Chandy, K.M. and Misra, J. (1984): The drinking philosophers

problem; ACM TOPLAS 6 (4), 632-646.

[CM87a] Chandy, K.M. and Misra, J. (1987): Parallel program design: a

foundation; Addison-Wesley Publishing Company.

[CM87b] Chandy, K.M. and Misra, J. (1987): Conditional knowledge as a ba-

sis for distributed simulation; 5251:TR:87, Computer Science Dept,

California Institute of Technology.

[CR] Carvalho, 0. and Roucairol, G. (1983): On mutual exclusion in

computer networks; CACM 26 (2), 146-147.

[CS] Chandy, K.M. and Sauer, C.H. (1978): Approximate methods for

analyzing queueing network models of computing systems; Com-

puting Surveys 10 (3), 281-317.

[Dij65] Dijkstra. E.W. (1965): Solution of a problem in concurrent pro-

gramming control; CACM 8 (9), 569.

[Dij74] Dijkstra, E.V. (1974): Self-stabilizing systems in spite of dis-

tributed control; CACM 17 (11), 643-644.

[Dij75] Dijkstra, E.W. (1975): Guarded commands, nondeterminancy and

formal derivation of programs; CACM 18 (8), 453-457.

[FY] Francez, N. and Yemini, S. (1985): Symmetric intertask conmuni-

cation; ACM TOPLAS 7 (4), 622-636.



173

[Gar] Garcia-Molina, H. (1982): Elections in a distributed computing

system; IEEE Transactions on Computers C-31 (1), 48-59.

[GK] Gopal, I. and Kermani, P. (1986): Distributed resource sharing in

computer networks; Foundations of Software Technology and The-

oretical Computer Science, Sixth Conference Proceedings. 319-327.

[GLSZ] Graham, G.S., Lazowska, E.D., Sevcik, K.C., and Zahorjan, J.

(1984): Quantitative system performance; Prentice Hall.

[Goul Gouda, M. (1987): The stabilizing philosophers: asymmetry by

memory and by action; TR-87-12, Dept of Computer Sciences, Uni-

versity of Texas at Austin.

[GS] Griefer, A. and Strong, R. (1988): DCF: distributed communica-

tion with fault tolerance; Research Report RJ 6361, IBM Almaden

Research Center.

[GZ] Gusella, R. and Zatti, S. (1986): An election algorithm for a dis-

tributed clock synchronization program; 6th International Confer-

ence on Distributed Computing Systems, IEEE Proceedings, 364-

371.

[Hoa] Hoare, C.A.R. (1978): Communicating sequential processes:

CA CM 21 (8), 666-677.

(KL] Kelton, W.D. and Law, A.M. (1982): Simulation Modeling and

Analysis; McGraw-Hill. Inc.

[Kna] Knapp, E. (1987): Deadlock detection in distributed databases;

working paper, Dept of Computer Sciences, University of Texas at

Austin.



174

[Koo] Koo, R. (1987): Techniques for simplifying the programming of dis-

tributed systems; TR-87-858, Dept of Computer Science, Cornell

University, Ithaca, New York.

[KS] Korth, H.F. and Silberschatz, A. (1986): Database system concepts;

McGraw-Hill, Inc.

[Kum] Kumar, D. (1985): A class of termination detection algorithms for

distributed computations; Foundations of Software Technology and

Theoretical Computer Science, Fifth Conference, 73-100.

[Lak] Lakshmi, M.S. (1987): A study and analysis of performance of dis-

tributed simulation: TR-87-32, Dept of Computer Sciences., Uni-

versity of Texas at Austin.

[Lam78] Lamport, L. (1978): Time, clocks, and the ordering of events in a

distributed system; CACMA 21 (7), 558-565.

[Lam84] Lamport, L. (1984): Solved problems, unsolved problems. and

non-problems in concurrency; Proceedings of the ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing, 1-11.

[Lam86a] Lamport, L. (1986): The mutual exclusion problem: part I - a

theory of interprocess communication; JACM 33 (2), 313-326.

[Lam86b] Lamport, L. (1986): The mutual exclusion problem: part II -

statement and solution: JACM 33 (2), 327-348.

[LM] Livny, M. and Manber, U. (1987): p - a system for simulating

and implementing distributed and parallel algorithms; CSTR-737,

Computer Sciences Department, University of Wisconsin at Madi-

soil.



175

[LSP] Lamport, L., Shostak, R. and Pease, M. (1982): The byzantine

generals problem; ACM TOPLAS 4 (3), 382-401.

[LP] Levi, S. and Plateau, B.D. (1986): A distributed algorithm for

deadlock and termination detection of distributed computations;

CS-TR-1750, Department of Computer Science, University of

Maryland at College Park.

[Mae] Maekawa, M. (1985): A VA algorithm for mutual exclusion in

decentralized systems; ACMA Transactions on Computer Systems 3

(2), 145-159.

[Mar] Marzullo, K. (1983): Maintaining the time in a distributed system:

Proceedings of the ACAM SIGACT-SIGOPS Symposium on Princi-

ples of Distributed Computing, 295-305.

[Mis83] Misra, J. (1983): Detecting termination of distributed computa-

tions using markers; Proceedings of the ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing. 290-294.

[Mis86] Misra, J. (1986): Distributed discrete-event simulation; Computing

Surveys 18 (1), 39-65.

[MM] Mitchell, D. and Merritt, M. (1984): A distributed algorithm

for deadlock detection and resolution; Proceedings of the ACM

SIGACT-SIGOPS Symposium on Principles of Distributed Com-

puting, 282-284.

[MOO] Maekawa, M., Oldehoeft, A. and Oldehoeft, R. (1987): Operat-

ing systems, advanced concepts; Benjamin/Cummings Publishing

Company, Inc.



176

[MS) Mohan, C. and Silberschatz, A. (1981): Distributed control - is

it always desirable?; IEEE Symposium on Reliability in Distributed

Software and Database Systems, 102-106.

[PS] Peterson, J.L. and Silberschatz, A. (1985): Operating system con-

cepts (second edition); Addison-Wesley Publishing Company.

[RA] Ricart, G. and Agrawala, A. (1981): An optimal algorithm for

mutual exclusion in computer networks; CACM 24 (1), 9-17.

[Ray] Raynal, M. (1986): Algorithms for mutual exclusion; MIT Press.

[Raym] Raymond, Kerry (1989): A tree-based algorithm for distributed

mutual exclusion; ACM Transactions on Computer Systems 7 (1),

61-77.

[Sch] Schneider, F. (1982): Synchronization in distributed programs;

ACM TOPLAS 4 (2); 179-195.

[Schw] Schwetman, H. (1988): Process level parallel programming; MCC-

ACA-ST-055-88, Microelectronics and Computer Technology Cor-

poration, Austin, Texas.

[SilS1] Silberschatz, A. (1981): Port directed communication: The Com-

puter Journal 24 (1), 78-82.

[Si184] Silberschatz, A. (1984): Characterization and analysis of dis-

tributed control schemes; working paper. Dept of Computer Sci-

ences, University of Texas at Austin.

[Sin] Singh, A.K. (1989): The paradigm of rankers; PhD Dissertation,

in preparation, Dept of Computer Sciences, University of Texas at

Austin.



177

[SK] Spezialetti, M. and Kearns, P. (1986): Efficient distributed snap-

shots; 6th International Conference on Distributed Computing Sys-

tems, IEEE Proceedings, 382-388.

[SuKa] Suzuki, I. and Kasami, T. (1985): A distributed mutual exclusion

algorithm; ACM Transactions on Computer Systems 3 (4), 344-

349.

[Sta] Stankovic, J.A. (1988): A serious problem for next-generation sys-

tems; IEEE Computer, 10-19.

[Tan] Tanenbaum, A.S. (1988): Computer networks (second edition),

Prentice-Hall, Inc.



VITA

Samuel Grier was born on 21 April 1951 in Bethesda, Maryland, the

son of Samuel Lycurgus Grier and Mary Bosserman Grier. Upon graduation

from Fort Hunt High School in Alexandria, Virginia, in 1969, Samuel entered

the U. S. Air Force Academy in Colorado Springs, Colorado. After graduat-

ing from the Academy, he attended Undergraduate Pilot Training at Williams

AFB, Arizona, and was chosen to fly Boeing KC-135A aircraft out of Loring

AFB, Maine. He flew as copilot, and then as pilot, of the KC-135A before

being selected for Graduate School to study for a Masters Degree in Com-

puter Science. In the Fall of 1979, Samuel entered Graduate School at the

University of Colorado in Boulder, Colorado, under the sponsorship of the Air

Force Academy. He did his thesis work under Doctor Lloyd Fosdick. resulting

in a program for detecting plagiarism in Pascal programs. After graduation

in December of 1980, he was stationed at the Air Force Academy as an In-

structor and subsequently Assistant Professor of Computer Science. The Air

Force Academy selected him to study for his Ph.D. in Computer Science; how-

ever, prior to his studies, Samuel was required to complete 11 years of Air

Force flying. From 1983 until 1986, he flew the KC-135A aircraft as an aircraft

commander, instructor pilot, and evaluator pilot at Fairchild AFB. Washing-

ton. His aircrew was recognized as the Best KC-135A Crew in the Strategic

Air Command in the 1985 Bombing/Navigation Competition, aTnd his crew

was subsequently recognized as the best KC-135A Crew overall in 15th Air

Force. In 1985, his introductory Pascal textbook, Pascal for the Eighties, was

published by Brooks/Cole Publishing Company. In the Fall of 1986, Samuel

entered the Graduate School of the University of Texas at Austin to obtain his

Ph.D. in Computer Science.



Permanent address: 18423 Cedar Drive
Triangle, Virginia 22172

This dissertation was typeset1 with LATEX by the author.

'L TEX document preparation system was developed by Leslie Lamport as a special version
of Donald Knuth's TX program for computer typesetting. TEX is a trademark of the
American Mathematical Society. The LATEX macro package for The University of Texas at
Austin dissertation format was written by Khe-Sing The.


